IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11401-d912297.html
   My bibliography  Save this article

Bioconversion of Starch Base Food Waste into Bioethanol

Author

Listed:
  • Helen Onyeaka

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
    HeTa Food Research Center of Excellence, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Rachel Fran Mansa

    (Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia)

  • Clemente Michael Vui Ling Wong

    (Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia)

  • Taghi Miri

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
    HeTa Food Research Center of Excellence, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

Abstract

The global demand for fuel keeps increasing daily. The massive depletion of fossil fuels and their influence on the environment as pollution is a severe problem. Meanwhile, food waste disposal is also a complex problem in solid-waste management since one-third of every food consumed is discarded as waste. The standard waste management methods, including food waste incineration and landfilling, are considered hazardous to the environment. Food waste constituents are majorly starch-based and contain various biomolecules, including sugar, lipids, proteins, vitamins, cellulose, etc. These polysaccharides can be hydrolysed into monosaccharides such as glucose, which can then be fermented using microorganisms to produce ethanol through the fermenting of sugars derived from enzymatic hydrolysis treatment of food wastes. The human food system is rich in starch, which can be a potential resource for bioethanol production.

Suggested Citation

  • Helen Onyeaka & Rachel Fran Mansa & Clemente Michael Vui Ling Wong & Taghi Miri, 2022. "Bioconversion of Starch Base Food Waste into Bioethanol," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11401-:d:912297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bibra, Mohit & Rathinam, Navanietha K. & Johnson, Glenn R. & Sani, Rajesh K., 2020. "Single pot biovalorization of food waste to ethanol by Geobacillus and Thermoanaerobacter spp," Renewable Energy, Elsevier, vol. 155(C), pages 1032-1041.
    2. Leonidas Matsakas & Paul Christakopoulos, 2015. "Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site," Sustainability, MDPI, vol. 7(2), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.
    2. Noraziah Abu Yazid & Raquel Barrena & Dimitrios Komilis & Antoni Sánchez, 2017. "Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review," Sustainability, MDPI, vol. 9(2), pages 1-28, February.
    3. Ilaria Finore & Ida Romano & Luigi Leone & Paola Di Donato & Barbara Nicolaus & Annarita Poli & Licia Lama, 2021. "Biomass Valorization: Sustainable Methods for the Production of Hemicellulolytic Catalysts from Thermoanaerobacterium thermostercoris strain BUFF," Resources, MDPI, vol. 10(11), pages 1-15, November.
    4. Aikaterini Konti & Dimitris Kekos & Diomi Mamma, 2020. "Life Cycle Analysis of the Bioethanol Production from Food Waste—A Review," Energies, MDPI, vol. 13(19), pages 1-14, October.
    5. Mohamad G. Abiad & Lokman I. Meho, 2018. "Food loss and food waste research in the Arab world: a systematic review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 311-322, April.
    6. Ioanna Ntaikou & Georgia Antonopoulou & Gerasimos Lyberatos, 2020. "Sustainable Second-Generation Bioethanol Production from Enzymatically Hydrolyzed Domestic Food Waste Using Pichia anomala as Biocatalyst," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    7. Bibra, Mohit & Rathinam, Navanietha K. & Johnson, Glenn R. & Sani, Rajesh K., 2020. "Single pot biovalorization of food waste to ethanol by Geobacillus and Thermoanaerobacter spp," Renewable Energy, Elsevier, vol. 155(C), pages 1032-1041.
    8. Leonidas Matsakas & Christos Nitsos & Dimitrij Vörös & Ulrika Rova & Paul Christakopoulos, 2017. "High-Titer Methane from Organosolv-Pretreated Spruce and Birch," Energies, MDPI, vol. 10(3), pages 1-15, February.
    9. Qiao Wang & Huan Li & Kai Feng & Jianguo Liu, 2020. "Oriented Fermentation of Food Waste towards High-Value Products: A Review," Energies, MDPI, vol. 13(21), pages 1-29, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11401-:d:912297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.