IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10945-d904630.html
   My bibliography  Save this article

In Situ Carbonized Polyvinyl Alcohol (PVA) Sponge by a Dehydration Reaction for Solar-Driven Interfacial Evaporation

Author

Listed:
  • Hongxia Cao

    (Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
    School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
    Anhui Snow Dragon Fibre Technology Co., Ltd., Suzhou 234000, China
    School of Materials Science and Engineering, Anhui University, Hefei 230601, China)

  • Dong Wang

    (School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China)

  • Zeyu Sun

    (School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China)

  • Yanyan Zhu

    (Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
    School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China)

Abstract

In this work, an in situ carbonization technique was employed using a dehydration reaction to construct an evaporator with a bilayer structure using polyvinyl alcohol (PVA) sponge as the raw material for solar-driven interfacial evaporation. Its top layer was uniformly covered with carbon species prepared from dehydration of the PVA sponge, which promoted light capture to warm water for steam generation. Meanwhile, its interconnected porous structure remained intact after carbonization of the PVA sponge and was accompanied by the presence of some oxygen-containing functional groups, which preserved its hydrophilicity. Furthermore, its bottom layer shared the micro-scale porous characteristic and favorable hydrophilicity of the pristine PVA sponge. The results illustrated that the prepared CS-3 evaporator was provided with remarkable evaporation performance, mirroring an evaporation rate of 1.38 kg m −2 h −1 . Additionally, a stable evaporation rate at around 1.36 kg m −2 h −1 was observed during the 10-cycle test. More importantly, the water desalinated from seawater was drinkable, which met the World Health Organization (WHO) standard. Consequently, it can be concluded that the evaporator developed using in situ carbonization of PVA sponge possessed many development prospects in the field of seawater desalination.

Suggested Citation

  • Hongxia Cao & Dong Wang & Zeyu Sun & Yanyan Zhu, 2022. "In Situ Carbonized Polyvinyl Alcohol (PVA) Sponge by a Dehydration Reaction for Solar-Driven Interfacial Evaporation," Sustainability, MDPI, vol. 14(17), pages 1-11, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10945-:d:904630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Chenglong & Zhao, Jiaxu & Zhang, Wenting & Miao, Endong & Xie, Yuhang, 2020. "Constructing 3D optical absorption holes by stacking macroporous membrane for highly efficient solar steam generation," Renewable Energy, Elsevier, vol. 159(C), pages 944-953.
    2. Tong, Yijie & Boldoo, Tsogtbilegt & Ham, Jeonggyun & Cho, Honghyun, 2020. "Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid," Energy, Elsevier, vol. 196(C).
    3. Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Zheng, Tuo & Zhu, Haiguang & Wu, Daxiong & Zhang, Canying & Zhu, Haitao, 2022. "Insight into the role of the channel in photothermal materials for solar interfacial water evaporation," Renewable Energy, Elsevier, vol. 193(C), pages 706-714.
    2. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    3. Humaira Yasmin & Solomon O. Giwa & Saima Noor & Hikmet Ş. Aybar, 2023. "Reproduction of Nanofluid Synthesis, Thermal Properties and Experiments in Engineering: A Research Paradigm Shift," Energies, MDPI, vol. 16(3), pages 1-32, January.
    4. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    5. Chen, Yanjun & Zhang, Yalei & Lan, Huiyong & Li, Changzheng & Liu, Xiuliang & He, Deqiang, 2023. "Electric field combined nanofluid to enhance photothermal efficiency of the direct absorption solar collector," Renewable Energy, Elsevier, vol. 215(C).
    6. Pavel G. Struchalin & Dmitrii M. Kuzmenkov & Vladimir S. Yunin & Xinzhi Wang & Yurong He & Boris V. Balakin, 2022. "Hybrid Nanofluid in a Direct Absorption Solar Collector: Magnetite vs. Carbon Nanotubes Compete for Thermal Performance," Energies, MDPI, vol. 15(5), pages 1-8, February.
    7. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Javadpour, Reza & Zeinali Heris, Saeed & Mohammadfam, Yaghoub, 2021. "Optimizing the effect of concentration and flow rate of water/ MWCNTs nanofluid on the performance of a forced draft cross-flow cooling tower," Energy, Elsevier, vol. 217(C).
    9. Liu, Haotuo & Ma, Zenghong & Zhang, Chenggui & Ai, Qing & Xie, Ming & Wu, Xiaohu, 2023. "Optical properties of hollow plasmonic nanopillars for efficient solar photothermal conversion," Renewable Energy, Elsevier, vol. 208(C), pages 251-262.
    10. Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
    11. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    12. Gao, Jingqiong & Yu, Wei & Xie, Huaqing & Mahian, Omid, 2022. "Graphene-based deep eutectic solvent nanofluids with high photothermal conversion and high-grade energy," Renewable Energy, Elsevier, vol. 190(C), pages 935-944.
    13. Tsogtbilegt Boldoo & Jeonggyun Ham & Honghyun Cho, 2020. "Comprehensive Experimental Study on the Thermophysical Characteristics of DI Water Based Co 0.5 Zn 0.5 Fe 2 O 4 Nanofluid for Solar Thermal Harvesting," Energies, MDPI, vol. 13(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10945-:d:904630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.