IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10771-d900996.html
   My bibliography  Save this article

Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province

Author

Listed:
  • Tie Zhang

    (College of Forestry, Guizhou University, Guiyang 550025, China)

  • Guijie Ding

    (College of Forestry, Guizhou University, Guiyang 550025, China
    Institute for Forest Resources and Environment of Guizhou, Guiyang 550025, China)

  • Jiangping Zhang

    (Forest Surveying and Planning Institute of Guizhou Province, Guiyang 550003, China)

  • Yujiao Qi

    (College of Forestry, Guizhou University, Guiyang 550025, China)

Abstract

The spatial heterogeneity on a regional scale of forest biomass is caused by multiple biotic and abiotic factors. However, the contributions of biotic and abiotic factors to the spatial heterogeneity of forest biomass remain unclear. Based on the data of the National Forest Continuous Inventory (NFCI), digital elevation model (DEM), and meteorological data of Guizhou Province in 2015, we studied the spatial heterogeneity of the aboveground forest biomass in Guizhou province and evaluated the contribution rates of its influencing factors using Moran’s I , semivariogram, distance-based Moran’s eigenvector maps (dbMEMs), and variance partitioning. The results showed that the forest biomass in Guizhou province had strong spatial heterogeneity. Biotic and abiotic factors explained 34.4% and 19.2% of the spatial variation in forest biomass, respectively. Among the biotic factors, the average height of the stand had the greatest influence on forest biomass, while annual precipitation had the greatest influence on forest biomass among abiotic factors. Spatial factors only explained 0.7% of the spatial variation of forest biomass, indicating that the contribution of spatial factors can be explained by some measured abiotic factors. This study provided an effective approach to understand the underlying mechanisms of spatial allocation of forest biomass.

Suggested Citation

  • Tie Zhang & Guijie Ding & Jiangping Zhang & Yujiao Qi, 2022. "Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10771-:d:900996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rupert Seidl & Mart-Jan Schelhaas & Werner Rammer & Pieter Johannes Verkerk, 2014. "Increasing forest disturbances in Europe and their impact on carbon storage," Nature Climate Change, Nature, vol. 4(9), pages 806-810, September.
    2. Yunjian Luo & Xiaoquan Zhang & Xiaoke Wang & Yin Ren, 2014. "Dissecting Variation in Biomass Conversion Factors across China’s Forests: Implications for Biomass and Carbon Accounting," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    3. N. L. Stephenson & A. J. Das & R. Condit & S. E. Russo & P. J. Baker & N. G. Beckman & D. A. Coomes & E. R. Lines & W. K. Morris & N. Rüger & E. Álvarez & C. Blundo & S. Bunyavejchewin & G. Chuyong & , 2014. "Rate of tree carbon accumulation increases continuously with tree size," Nature, Nature, vol. 507(7490), pages 90-93, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Christine & Schlemme, Claire & Murray, Jessica & Unsworth, Robert, 2015. "The cost of climate change: Ecosystem services and wildland fires," Ecological Economics, Elsevier, vol. 116(C), pages 261-269.
    2. Honkaniemi, Juha & Ojansuu, Risto & Kasanen, Risto & Heliövaara, Kari, 2018. "Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT," Ecological Modelling, Elsevier, vol. 388(C), pages 45-60.
    3. Patrice Loisel & Marielle Brunette & Stéphane Couture, 2022. "Ambiguity, value of information and forest rotation decision under storm risk," Working Papers of BETA 2022-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    4. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    5. Kallio, A. Maarit I. & Solberg, Birger & Käär, Liisa & Päivinen, Risto, 2018. "Economic impacts of setting reference levels for the forest carbon sinks in the EU on the European forest sector," Forest Policy and Economics, Elsevier, vol. 92(C), pages 193-201.
    6. Ohmura, Tamaki & Creutzburg, Leonard, 2021. "Guarding the For(es)t: Sustainable economy conflicts and stakeholder preference of policy instruments," Forest Policy and Economics, Elsevier, vol. 131(C).
    7. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    8. Julie Thomas & Marielle Brunette & Antoine Leblois, 2021. "Adapting forest management practices to climate change : Lessons from a survey of French private forest owners," Working Papers hal-03142772, HAL.
    9. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).
    10. Magdalena Majchrzak & Piotr Szczypa & Krzysztof Adamowicz, 2022. "Supply of Wood Biomass in Poland in Terms of Extraordinary Threat and Energy Transition," Energies, MDPI, vol. 15(15), pages 1-22, July.
    11. Lessa Derci Augustynczik, Andrey & Yousefpour, Rasoul, 2021. "Assessing the synergistic value of ecosystem services in European beech forests," Ecosystem Services, Elsevier, vol. 49(C).
    12. Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
    13. Upeksha Caldera & Christian Breyer, 2023. "Afforesting arid land with renewable electricity and desalination to mitigate climate change," Nature Sustainability, Nature, vol. 6(5), pages 526-538, May.
    14. Louis, Marceau & Toffin, Etienne & Gregoire, Jean-Claude & Deneubourg, Jean-Louis, 2016. "Modelling collective foraging in endemic bark beetle populations," Ecological Modelling, Elsevier, vol. 337(C), pages 188-199.
    15. Montagné-Huck, Claire & Brunette, Marielle, 2018. "Economic analysis of natural forest disturbances: A century of research," Journal of Forest Economics, Elsevier, vol. 32(C), pages 42-71.
    16. Giovanni B. Concu & Claudio Detotto & Marco Vannini, 2021. "Drivers of intentions and drivers of actions: willingness toparticipate versus actual participation in fire management inSardinia, Italy," Working Papers 018, Laboratoire Lieux, Identités, eSpaces et Activités (LISA).
    17. Ali Jahani & Maryam Saffariha, 2022. "Tree failure prediction model (TFPM): machine learning techniques comparison in failure hazard assessment of Platanus orientalis in urban forestry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 881-898, January.
    18. Luca Nonini & Marco Fiala, 2022. "Assessment of Forest Wood and Carbon Stock at the Stand Level: First Results of a Modeling Approach for an Italian Case Study Area of the Central Alps," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    19. Sampo Soimakallio & Tuomo Kalliokoski & Aleksi Lehtonen & Olli Salminen, 2021. "On the trade-offs and synergies between forest carbon sequestration and substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-17, January.
    20. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10771-:d:900996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.