IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10220-d890768.html
   My bibliography  Save this article

Mycorrhiza: An Ecofriendly Bio-Tool for Better Survival of Plants in Nature

Author

Listed:
  • Mamta Dhiman

    (Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll Plaza, Jaipur-Ajmer Expressway, Jaipur 303007, Rajasthan, India)

  • Lakshika Sharma

    (Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll Plaza, Jaipur-Ajmer Expressway, Jaipur 303007, Rajasthan, India)

  • Prashant Kaushik

    (Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Abhijeet Singh

    (Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll Plaza, Jaipur-Ajmer Expressway, Jaipur 303007, Rajasthan, India)

  • Madan Mohan Sharma

    (Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll Plaza, Jaipur-Ajmer Expressway, Jaipur 303007, Rajasthan, India)

Abstract

Modern agriculture is currently enduring rapid changes in defiance of the continuing increase of the global population and the various consequent environmental challenges. Crop quality is becoming as important as crop yield and can be characterized by several parameters. Extensive use of chemical fertilizers leads to food safety concerns globally; hence, the use of mycorrhizal symbionts have proven to be beneficial for the sustainable growth of the agricultural cropping system. Microflora inhabiting the soil entails various ecological interactions which are associated with agricultural performances. Amongst these microflora, mycorrhizal fungi are the critical suppliers of nutrients, with restricted diffusion capacities of minerals such as phosphorus, nitrate, zinc, sulfur etc. Mycorrhizae are the obligatory biotrophs that depend upon their host plant for the nutritional requirements. They act as the key contributors to sustainable agro-ecological enforcement and impact globally on the eco-systemic processes. These soil inhabitants devote themselves to the continuous nutrient flow and extemporize resistance against various environmental stresses like drought, flood, metal toxicity, salinity, etc. This review briefly highlights the taxonomic co-evolution, factors affecting mycorrhizal behaviors (phytohormonal regulation), and the concise mechanistic approach (improved water status, photosystems, stomatal conductance, ionic uptake, C & N fixation) to combat various environmental stresses (biotic/abiotic). Plant growth regulators play a crucial role in this symbiotic establishment with the plant roots. Auxins, brassinosteroids, and strigolactones are responsible for the establishment of mycorrhizal association. On the other hand, ethylene, abscisic acid, and jasmonic acids can promote or downregulate this process in the plants. Whereas, gibberellic acids and salicylic acids negatively impact on mycorrhizal association. The hormonal homeostasis (in response to fungal associations) leads to the activation of transcriptional and signaling cascades which ensues various physio-morphological changes for the benefit of the plant. The role of phytohormones in the regulation of plant-fungus mutualism, and the impact of mycorrhization on the activation of molecular and transcriptional cascades, have been described along with the potential applications of agricultural produce and soil rehabilitation.

Suggested Citation

  • Mamta Dhiman & Lakshika Sharma & Prashant Kaushik & Abhijeet Singh & Madan Mohan Sharma, 2022. "Mycorrhiza: An Ecofriendly Bio-Tool for Better Survival of Plants in Nature," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10220-:d:890768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David S. Hibbett & Luz-Beatriz Gilbert & Michael J. Donoghue, 2000. "Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes," Nature, Nature, vol. 407(6803), pages 506-508, September.
    2. Kohki Akiyama & Ken-ichi Matsuzaki & Hideo Hayashi, 2005. "Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi," Nature, Nature, vol. 435(7043), pages 824-827, June.
    3. Ana M. Leudo & Yuby Cruz & Carolina Montoya-Ruiz & María del Pilar Delgado & Juan F. Saldarriaga, 2020. "Mercury Phytoremediation with Lolium perenne -Mycorrhizae in Contaminated Soils," Sustainability, MDPI, vol. 12(9), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuhua CHEN & Rui ZHANG & Fengling WANG, 2017. "Transgenic Bt cotton inhibited arbuscular mycorrhizal fungus differentiation and colonization," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(2), pages 62-69.
    2. Jinying Cui & Noriko Nishide & Kiyoshi Mashiguchi & Kana Kuroha & Masayuki Miya & Kazuhiko Sugimoto & Jun-Ichi Itoh & Shinjiro Yamaguchi & Takeshi Izawa, 2023. "Fertilization controls tiller numbers via transcriptional regulation of a MAX1-like gene in rice cultivation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Pankaj Bhatt & Amit Verma & Shulbhi Verma & Md. Shahbaz Anwar & Parteek Prasher & Harish Mudila & Shaohua Chen, 2020. "Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    4. Abdul Saboor & Muhammad Arif Ali & Niaz Ahmed & Milan Skalicky & Subhan Danish & Shah Fahad & Fahmy Hassan & Mohamed M. Hassan & Marian Brestic & Ayman EL Sabagh & Rahul Datta, 2021. "Biofertilizer-Based Zinc Application Enhances Maize Growth, Gas Exchange Attributes, and Yield in Zinc-Deficient Soil," Agriculture, MDPI, vol. 11(4), pages 1-20, April.
    5. Mohd. Kamran Khan & Anamika Pandey & Mehmet Hamurcu & Tomáš Vyhnánek & Sajad Majeed Zargar & Abdullah Kahraman & Ali Topal & Sait Gezgin, 2024. "Exploring strigolactones for inducing abiotic stress tolerance in plants," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 60(2), pages 55-69.
    6. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    7. Gergely Boza & Ádám Kun & István Scheuring & Ulf Dieckmann, 2012. "Strategy Diversity Stabilizes Mutualism through Investment Cycles, Phase Polymorphism, and Spatial Bubbles," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-14, November.
    8. Alan W Bowsher & Rifhat Ali & Scott A Harding & Chung-Jui Tsai & Lisa A Donovan, 2016. "Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-16, January.
    9. Mohammad Faisal & Mohammad Faizan & Sadia Haque Tonny & Vishnu D. Rajput & Tatiana Minkina & Abdulrahman A. Alatar & Ranjith Pathirana, 2023. "Strigolactone-Mediated Mitigation of Negative Effects of Salinity Stress in Solanum lycopersicum through Reducing the Oxidative Damage," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    10. Kyoichi Kodama & Mélanie K. Rich & Akiyoshi Yoda & Shota Shimazaki & Xiaonan Xie & Kohki Akiyama & Yohei Mizuno & Aino Komatsu & Yi Luo & Hidemasa Suzuki & Hiromu Kameoka & Cyril Libourel & Jean Kelle, 2022. "An ancestral function of strigolactones as symbiotic rhizosphere signals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Cotta, Carlos, 2006. "Scatter search with path relinking for phylogenetic inference," European Journal of Operational Research, Elsevier, vol. 169(2), pages 520-532, March.
    12. Satoshi Ogawa & Songkui Cui & Alexandra R. F. White & David C. Nelson & Satoko Yoshida & Ken Shirasu, 2022. "Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. repec:caa:jnlcjg:v:preprint:id:88-2023-cjgpb is not listed on IDEAS
    14. Abid Ali & Guy Kateta Malangisha & Haiyang Yang & Chen Li & Chi Wang & Yubin Yang & Ahmed Mahmoud & Jehanzeb Khan & Jinghua Yang & Zhongyuan Hu & Mingfang Zhang, 2021. "Strigolactone Alleviates Herbicide Toxicity via Maintaining Antioxidant Homeostasis in Watermelon ( Citrullus lanatus )," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    15. Veresoglou, Stavros D. & Halley, John M., 2012. "A model that explains diversity patterns of arbuscular mycorrhizas," Ecological Modelling, Elsevier, vol. 231(C), pages 146-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10220-:d:890768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.