IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10109-d888747.html
   My bibliography  Save this article

The Evaluation of Rock Mass Characteristics against Seepage for Sustainable Infrastructure Development

Author

Listed:
  • Muhammad Nasir Khurshid

    (Department of Transportation Engineering and Management (DTEM), University of Engineering and Technology (UET), G.T. Road, Lahore 54890, Pakistan)

  • Ammad Hassan Khan

    (Department of Transportation Engineering and Management (DTEM), University of Engineering and Technology (UET), G.T. Road, Lahore 54890, Pakistan)

  • Zia ur Rehman

    (Department of Transportation Engineering and Management (DTEM), University of Engineering and Technology (UET), G.T. Road, Lahore 54890, Pakistan)

  • Tahir Sultan Chaudhary

    (Department of Civil Engineering, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan)

Abstract

The determination of rock seepage characteristics is a complex phenomenon due to the variability, discontinuities, and formation age of rocks. The available literature on rock mechanics covers empirical relationships and approaches for the estimation of seepage characteristics from the rock mass parameters. In this study, an area comprising of infrastructure such as a water reservoir, embankments, roads, etc., constructed on mix rock mass formations was selected. The field and laboratory tests’ geo-mechanical data for the study area were evaluated. The data obtained from the field geo-mechanical engineering tests like Rock Quality Designation (RQD), Rock Core Recovery, Lugeon, etc., were analyzed. The data retrieved from the geological and geotechnical laboratory tests such as petrography, uniaxial compression, Hoek shear, elastic modulus, etc., were also evaluated. Rock mass was characterized based on petrographic and RQD, and was found in the hybrid formation of igneous, metamorphic, and sedimentary deposits. Seepage analysis in the study area was also carried out based on adit and piezometric data (installed in accordance with the mining technology guidelines), using Seep W Finite Element Method (FEM). The seepage observed in adits were compared with seepage calculated from Seep W. The trend of simulated flux was also presented against K ratio. Seepage quantities for different ranges of K ratio were plotted to evaluate interdependency between seepage and K ratio. Correlations of RQD were developed with hydraulic conductivity “k” for igneous, metamorphic, and sedimentary rocks for quick assessment of seepage characteristics of rock mass by RQD. These correlations and seepage related evaluations will be beneficial for the characterization of rock mass in relation to seepage for sustainable infrastructure development.

Suggested Citation

  • Muhammad Nasir Khurshid & Ammad Hassan Khan & Zia ur Rehman & Tahir Sultan Chaudhary, 2022. "The Evaluation of Rock Mass Characteristics against Seepage for Sustainable Infrastructure Development," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10109-:d:888747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10109/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10109/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi-Hua Zhang & Qing-Bing Liu & Ai-Jun Su & Yu-Jie Li & Yi-Hu Zhang, 2021. "Hydraulic Conductivity of Rock Masses Surrounding Water Curtain Boreholes for Underground Oil Storage Caverns," Energies, MDPI, vol. 14(15), pages 1-21, July.
    2. Ahmed Gowida & Tamer Moussa & Salaheldin Elkatatny & Abdulwahab Ali, 2019. "A Hybrid Artificial Intelligence Model to Predict the Elastic Behavior of Sandstone Rocks," Sustainability, MDPI, vol. 11(19), pages 1-22, September.
    3. Chenxi Zhang & Diyuan Li & Shunchuan Wu & Long Chen & Jun Peng, 2021. "Study on Evolution Mechanism of Structure-Type Rockburst: Insights from Discrete Element Modeling," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    4. Ting Jiang & Zhenzhong Shen & Yang Liu & Yiyang Hou, 2018. "Carbon Footprint Assessment of Four Normal Size Hydropower Stations in China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    5. Weiyao Tang & Zongmin Li & Yan Tu, 2018. "Sustainability Risk Evaluation for Large-Scale Hydropower Projects with Hybrid Uncertainty," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    2. Chenxi Zhang & Diyuan Li & Shunchuan Wu & Long Chen & Jun Peng, 2021. "Study on Evolution Mechanism of Structure-Type Rockburst: Insights from Discrete Element Modeling," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    3. Miltiadis D. Lytras & Anna Visvizi, 2021. "Artificial Intelligence and Cognitive Computing: Methods, Technologies, Systems, Applications and Policy Making," Sustainability, MDPI, vol. 13(7), pages 1-3, March.
    4. Taitiya Kenneth Yuguda & Yi Li & Bobby Shekarau Luka & Goziya William Dzarma, 2020. "Incorporating Reservoir Greenhouse Gas Emissions into Carbon Footprint of Sugar Produced from Irrigated Sugarcane in Northeastern Nigeria," Sustainability, MDPI, vol. 12(24), pages 1-24, December.
    5. Xuedong Liang & Dongyang Si & Jing Xu, 2018. "Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    6. Chen, Xiuzhi & Liu, Chang & van Oel, Pieter & Mergia Mekonnen, Mesfin & Thorp, Kelly R. & Yin, Tuo & Wang, Jinyan & Muhammad, Tahir & Li, Yunkai, 2022. "Water and carbon risks within hydropower development on national scale," Applied Energy, Elsevier, vol. 325(C).
    7. Sekamane, Thabang & Nel, W.A.J. & McKay, Tracey J. & Tantoh, Henry Bikwibili, 2023. "Community perceptions of the social impacts of the Metolong Dam and Reservoir in Lesotho," Land Use Policy, Elsevier, vol. 125(C).
    8. Yan Li & Fathin Nur Syakirah Hishamuddin & Ahmed Salih Mohammed & Danial Jahed Armaghani & Dmitrii Vladimirovich Ulrikh & Ali Dehghanbanadaki & Aydin Azizi, 2021. "The Effects of Rock Index Tests on Prediction of Tensile Strength of Granitic Samples: A Neuro-Fuzzy Intelligent System," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    9. Rozmysław Mieński & Przemysław Urbanek & Irena Wasiak, 2021. "Using Energy Storage Inverters of Prosumer Installations for Voltage Control in Low-Voltage Distribution Networks," Energies, MDPI, vol. 14(4), pages 1-21, February.
    10. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    11. Xin Wei & Niaz Muhammad Shahani & Xigui Zheng, 2023. "Predictive Modeling of the Uniaxial Compressive Strength of Rocks Using an Artificial Neural Network Approach," Mathematics, MDPI, vol. 11(7), pages 1-17, March.
    12. Lechón, Yolanda & Lago, Carmen & Herrera, Israel & Gamarra, Ana Rosa & Pérula, Alberto, 2023. "Carbon benefits of different energy storage alternative end uses. Application to the Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Ion V. Ion & Antoaneta Ene, 2021. "Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    14. Qingzhen Zhang & Wenzhe Tang & Jersey Liu & Colin F. Duffiel & Felix Kin Peng Hui & Lihai Zhang & Xuteng Zhang, 2018. "Improving Design Performance by Alliance between Contractors and Designers in International Hydropower EPC Projects from the Perspective of Chinese Construction Companies," Sustainability, MDPI, vol. 10(4), pages 1-24, April.
    15. Lei Yu & Benyou Jia & Shiqiang Wu & Xiufeng Wu & Peng Xu & Jiangyu Dai & Fangfang Wang & Liming Ma, 2019. "Cumulative Environmental Effects of Hydropower Stations Based on the Water Footprint Method—Yalong River Basin, China," Sustainability, MDPI, vol. 11(21), pages 1-12, October.
    16. Dogmus, Özge Can & Nielsen, Jonas Ø., 2019. "Is the hydropower boom actually taking place? A case study of a South East European country, Bosnia and Herzegovina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 278-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10109-:d:888747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.