IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p8036-d596839.html
   My bibliography  Save this article

Study on Evolution Mechanism of Structure-Type Rockburst: Insights from Discrete Element Modeling

Author

Listed:
  • Chenxi Zhang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Diyuan Li

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Shunchuan Wu

    (School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Long Chen

    (School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Jun Peng

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract

Taking the “11.28” rockburst occurred in the Jinping II Hydropower Station as the engineering background, the evolution mechanism of structure-type rockburst was studied in detail based on the particle flow code. The results indicate that the failure mechanism of structure-type rockburst includes a tensile fracture induced by tangential compressive stress and a shear fracture caused by shear stress due to overburdened loadings and shear slip on the structural plane. In addition, it is found that the differences between structure-type rockburst and strainburst mainly include (a) the distribution of the local concentrated stress zone after excavation, (b) the evolution mechanism, and (c) the failure locations. Finally, the influence of four factors on the structure-type rockburst are explored. The results show that (1) when the friction coefficient is greater than 0.5, the effect of structural plane is weakened, and the rock near excavation tends to be intact, the structural-type rockburst intensity decreases; (2) the dissipated and radiated energy in structural-type rockburst reduces with rockmass heterogeneity m ; (3) the lateral pressure coefficient has a significant effect on the intensity of deep rock failure, specifically in the form of the rapid growth in dissipative energy; (4) and the structural-type rockburst is more pronounced at a structural plane length near 90 mm.

Suggested Citation

  • Chenxi Zhang & Diyuan Li & Shunchuan Wu & Long Chen & Jun Peng, 2021. "Study on Evolution Mechanism of Structure-Type Rockburst: Insights from Discrete Element Modeling," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8036-:d:596839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/8036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/8036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    2. Ting Jiang & Zhenzhong Shen & Yang Liu & Yiyang Hou, 2018. "Carbon Footprint Assessment of Four Normal Size Hydropower Stations in China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    3. Weiyao Tang & Zongmin Li & Yan Tu, 2018. "Sustainability Risk Evaluation for Large-Scale Hydropower Projects with Hybrid Uncertainty," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Nasir Khurshid & Ammad Hassan Khan & Zia ur Rehman & Tahir Sultan Chaudhary, 2022. "The Evaluation of Rock Mass Characteristics against Seepage for Sustainable Infrastructure Development," Sustainability, MDPI, vol. 14(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Nasir Khurshid & Ammad Hassan Khan & Zia ur Rehman & Tahir Sultan Chaudhary, 2022. "The Evaluation of Rock Mass Characteristics against Seepage for Sustainable Infrastructure Development," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    2. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    3. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    4. Taitiya Kenneth Yuguda & Yi Li & Bobby Shekarau Luka & Goziya William Dzarma, 2020. "Incorporating Reservoir Greenhouse Gas Emissions into Carbon Footprint of Sugar Produced from Irrigated Sugarcane in Northeastern Nigeria," Sustainability, MDPI, vol. 12(24), pages 1-24, December.
    5. Lechón, Yolanda & Lago, Carmen & Herrera, Israel & Gamarra, Ana Rosa & Pérula, Alberto, 2023. "Carbon benefits of different energy storage alternative end uses. Application to the Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Ion V. Ion & Antoaneta Ene, 2021. "Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    7. Lei Li & Yujiang Xie & Jingqiang Tan, 2020. "Application of Waveform Stacking Methods for Seismic Location at Multiple Scales," Energies, MDPI, vol. 13(18), pages 1-15, September.
    8. Xuedong Liang & Dongyang Si & Jing Xu, 2018. "Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    9. Chen, Xiuzhi & Liu, Chang & van Oel, Pieter & Mergia Mekonnen, Mesfin & Thorp, Kelly R. & Yin, Tuo & Wang, Jinyan & Muhammad, Tahir & Li, Yunkai, 2022. "Water and carbon risks within hydropower development on national scale," Applied Energy, Elsevier, vol. 325(C).
    10. Weizhang Liang & Asli Sari & Guoyan Zhao & Stephen D. McKinnon & Hao Wu, 2020. "Short-term rockburst risk prediction using ensemble learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1923-1946, November.
    11. Jiachuang Wang & Haoji Ma & Xianhang Yan, 2023. "Rockburst Intensity Classification Prediction Based on Multi-Model Ensemble Learning Algorithms," Mathematics, MDPI, vol. 11(4), pages 1-29, February.
    12. Qingzhen Zhang & Wenzhe Tang & Jersey Liu & Colin F. Duffiel & Felix Kin Peng Hui & Lihai Zhang & Xuteng Zhang, 2018. "Improving Design Performance by Alliance between Contractors and Designers in International Hydropower EPC Projects from the Perspective of Chinese Construction Companies," Sustainability, MDPI, vol. 10(4), pages 1-24, April.
    13. Lei Yu & Benyou Jia & Shiqiang Wu & Xiufeng Wu & Peng Xu & Jiangyu Dai & Fangfang Wang & Liming Ma, 2019. "Cumulative Environmental Effects of Hydropower Stations Based on the Water Footprint Method—Yalong River Basin, China," Sustainability, MDPI, vol. 11(21), pages 1-12, October.
    14. Sekamane, Thabang & Nel, W.A.J. & McKay, Tracey J. & Tantoh, Henry Bikwibili, 2023. "Community perceptions of the social impacts of the Metolong Dam and Reservoir in Lesotho," Land Use Policy, Elsevier, vol. 125(C).
    15. Jianguo Zhang & Peitao Li & Xin Yin & Sheng Wang & Yuanguang Zhu, 2022. "Back Analysis of Surrounding Rock Parameters in Pingdingshan Mine Based on BP Neural Network Integrated Mind Evolutionary Algorithm," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    16. Farzin Golzar & David Nilsson & Viktoria Martin, 2020. "Forecasting Wastewater Temperature Based on Artificial Neural Network (ANN) Technique and Monte Carlo Sensitivity Analysis," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    17. Dogmus, Özge Can & Nielsen, Jonas Ø., 2019. "Is the hydropower boom actually taking place? A case study of a South East European country, Bosnia and Herzegovina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 278-289.
    18. Guangliang Feng & Manqing Lin & Yang Yu & Yu Fu, 2020. "A Microseismicity-Based Method of Rockburst Intensity Warning in Deep Tunnels in the Initial Period of Microseismic Monitoring," Energies, MDPI, vol. 13(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8036-:d:596839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.