IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8612-d862513.html
   My bibliography  Save this article

Urban Heat Island Mitigation through Planned Simulation

Author

Listed:
  • Paul Eduardo Vásquez-Álvarez

    (Academic Unit of Postgraduate, Master’s Program in Construction, Catholic University of Cuenca, Cuenca 010111, Ecuador)

  • Carlos Flores-Vázquez

    (Academic Unit of Postgraduate, Electrical Engineering Career, Visible Radiation and Prototyping Research Group GIRVyP, Research, Innovation and Technology Transfer Center (CIITT), Catholic University of Cuenca, Cuenca 010111, Ecuador)

  • Juan-Carlos Cobos-Torres

    (Academic Unit of Postgraduate, Electrical Engineering Career, Visible Radiation and Prototyping Research Group GIRVyP, Embedded Systems and Artificial Vision in Architectural, Agricultural, Environmental and Automatic Sciences Research Group (SEVA4CA), Catholic University of Cuenca, Cuenca 010111, Ecuador)

  • Sandra Lucía Cobos-Mora

    (Academic Unit of Postgraduate, Research, Innovation and Technology Transfer Center (CIITT), Civil Engineering Career, Urban and Earth Data Science Research Group, City, Environment and Technology Research Group, Catholic University of Cuenca, Cuenca 010111, Ecuador
    Department of Physical Geography and Regional Geographical Analysis, University of Sevilla, 41004 Sevilla, Spain)

Abstract

The urban heat island (UHI) phenomenon is caused by the anthropic alteration of the natural environment by urban expansion, its impermeable surfaces, and anthropic activities. In addition, urban morphology can also contribute to the increase in temperature in cities. The UHI effect can be described as an urban climate that is generally characterized by higher temperatures in densely built-up areas compared to surrounding areas. This effect impacts the environmental stress of the city and directly affects the health and quality of life of its inhabitants. Therefore, it is necessary to allocate resources to understand the UHI mechanism in cities in order to propose appropriate mitigation measures that will reduce energy consumption and improve living conditions. In this context, this research was aimed at analyzing the behavior of urban heat islands by replacing asphalt with cool paving materials (concrete) in roadways. Through computer simulations, using the ENVI-met software, the thermal variations of urban heat islands were examined. The city of Cuenca (Ecuador) was selected as the study area. The day of the analysis was 22 January 2020, which was recorded as the warmest day of the year, registering an average temperature of 16 °C. The findings of this research evidenced that, by replacing asphalt pavements with concrete pavements in the analyzed zones, land surface temperature (LST) could be reduced by 8 °C and the global LST of the studied areas could be reduced by approximately 3 °C. Consequently, the mean air temperature of the study areas reflected a decrease of up to 0.83 °C.

Suggested Citation

  • Paul Eduardo Vásquez-Álvarez & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & Sandra Lucía Cobos-Mora, 2022. "Urban Heat Island Mitigation through Planned Simulation," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8612-:d:862513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dario Ambrosini & Giorgio Galli & Biagio Mancini & Iole Nardi & Stefano Sfarra, 2014. "Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met ® Climate Model," Sustainability, MDPI, vol. 6(10), pages 1-17, October.
    2. Lu Niu & Ronglin Tang & Yazhen Jiang & Xiaoming Zhou, 2020. "Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    3. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    4. Gabriele Manoli & Simone Fatichi & Markus Schläpfer & Kailiang Yu & Thomas W. Crowther & Naika Meili & Paolo Burlando & Gabriel G. Katul & Elie Bou-Zeid, 2019. "Magnitude of urban heat islands largely explained by climate and population," Nature, Nature, vol. 573(7772), pages 55-60, September.
    5. Manjula Ranagalage & Ronald C. Estoque & Xinmin Zhang & Yuji Murayama, 2018. "Spatial Changes of Urban Heat Island Formation in the Colombo District, Sri Lanka: Implications for Sustainability Planning," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    6. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
    7. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricio Pacheco & Eduardo Mera & Voltaire Fuentes, 2023. "Intensive Urbanization, Urban Meteorology and Air Pollutants: Effects on the Temperature of a City in a Basin Geography," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    2. Nasim Eslamirad & Abel Sepúlveda & Francesco De Luca & Kimmo Sakari Lylykangas & Sadok Ben Yahia, 2023. "Outdoor Thermal Comfort Optimization in a Cold Climate to Mitigate the Level of Urban Heat Island in an Urban Area," Energies, MDPI, vol. 16(12), pages 1-28, June.
    3. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Bao-Jie & Wang, Junsong & Zhu, Jin & Qi, Jinda, 2022. "Beating the urban heat: Situation, background, impacts and the way forward in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    3. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    5. Muhammad Sajid Mehmood & Zeeshan Zafar & Muhammad Sajjad & Sadam Hussain & Shiyan Zhai & Yaochen Qin, 2022. "Time Series Analyses and Forecasting of Surface Urban Heat Island Intensity Using ARIMA Model in Punjab, Pakistan," Land, MDPI, vol. 12(1), pages 1-20, December.
    6. Chiatti, Chiara & Kousis, Ioannis & Fabiani, Claudia & Pisello, Anna Laura, 2022. "Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles," Renewable Energy, Elsevier, vol. 196(C), pages 28-39.
    7. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    8. Anna Laura Pisello & Maria Saliari & Konstantina Vasilakopoulou & Shamila Hadad & Mattheos Santamouris, 2018. "Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    9. Miguel Ángel Sanjuán & Ángel Morales & Aniceto Zaragoza, 2021. "Effect of Precast Concrete Pavement Albedo on the Climate Change Mitigation in Spain," Sustainability, MDPI, vol. 13(20), pages 1-13, October.
    10. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou & Dimitrios Bikas, 2020. "Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review," Energies, MDPI, vol. 13(6), pages 1-25, March.
    11. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    12. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    13. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    14. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    15. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    16. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    17. Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    19. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    20. Chih-Hong Huang & Hsin-Hua Tsai & Hung-chen Chen, 2020. "Influence of Weather Factors on Thermal Comfort in Subtropical Urban Environments," Sustainability, MDPI, vol. 12(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8612-:d:862513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.