IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8551-d861431.html
   My bibliography  Save this article

Land Use Land/Cover Change Reduces Woody Plant Diversity and Carbon Stocks in a Lowland Coastal Forest Ecosystem, Tanzania

Author

Listed:
  • Lucas Theodori Ntukey

    (Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering (LiSBE), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha P.O. Box 447, Tanzania)

  • Linus Kasian Munishi

    (Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering (LiSBE), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha P.O. Box 447, Tanzania)

  • Anna Christina Treydte

    (Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering (LiSBE), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha P.O. Box 447, Tanzania
    Ecology of Tropical Agricultural Systems, Hans-Ruthenberg Institute, University of Hohenheim, 70599 Stuttgart, Germany
    Department of Physical Geography, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden)

Abstract

The East-African lowland coastal forest (LCF) is one of Africa’s centres of species endemism, representing an important biodiversity hotspot. However, deforestation and forest degradation due to the high demand for fuelwood has reduced forest cover and diversity, with unknown consequences for associated terrestrial carbon stocks in this LCF system. Our study assessed spatio-temporal land use and land cover changes (LULC) in 1998, 2008, 2018 in the LCF ecosystem, Tanzania. In addition, we conducted a forest inventory survey and calculated associated carbon storage for this LCF ecosystem. Using methods of land use change evaluation plug-in in QGIS based on historical land use data, we modelled carbon stock trends post-2018 in associated LULC for the future 30 years. We found that agriculture and grassland combined increased substantially by 21.5% between the year 1998 and 2018 while forest cover declined by 29%. Furthermore, forest above-ground live biomass carbon (AGC) was 2.4 times higher in forest than in the bushland, 5.8 times in the agriculture with scattered settlement and 14.8 times higher than in the grassland. The estimated average soil organic carbon (SOC) was 76.03 ± 6.26 t/ha across the entire study area. Our study helps to identify land use impacts on ecosystem services, supporting decision-makers in future land-use planning.

Suggested Citation

  • Lucas Theodori Ntukey & Linus Kasian Munishi & Anna Christina Treydte, 2022. "Land Use Land/Cover Change Reduces Woody Plant Diversity and Carbon Stocks in a Lowland Coastal Forest Ecosystem, Tanzania," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8551-:d:861431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lalisa A. Duguma & Joanes Atela & Peter A. Minang & Alemayehu N. Ayana & Belachew Gizachew & Judith M. Nzyoka & Florence Bernard, 2019. "Deforestation and Forest Degradation as an Environmental Behavior: Unpacking Realities Shaping Community Actions," Land, MDPI, vol. 8(2), pages 1-17, January.
    2. Lucas Theodori Ntukey & Linus Kasian Munishi & Edward Kohi & Anna Christina Treydte, 2022. "Land Use/Cover Change Reduces Elephant Habitat Suitability in the Wami Mbiki–Saadani Wildlife Corridor, Tanzania," Land, MDPI, vol. 11(2), pages 1-20, February.
    3. Aida Cuni-Sanchez & Martin J. P. Sullivan & Philip J. Platts & Simon L. Lewis & Rob Marchant & Gérard Imani & Wannes Hubau & Iveren Abiem & Hari Adhikari & Tomas Albrecht & Jan Altman & Christian Aman, 2021. "High aboveground carbon stock of African tropical montane forests," Nature, Nature, vol. 596(7873), pages 536-542, August.
    4. Sekela Twisa & Manfred F. Buchroithner, 2019. "Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania," Land, MDPI, vol. 8(9), pages 1-15, September.
    5. Rimal, Bhagawat & Sharma, Roshan & Kunwar, Ripu & Keshtkar, Hamidreza & Stork, Nigel E. & Rijal, Sushila & Rahman, Syed Ajijur & Baral, Himlal, 2019. "Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    6. Simon L. Lewis & Gabriela Lopez-Gonzalez & Bonaventure Sonké & Kofi Affum-Baffoe & Timothy R. Baker & Lucas O. Ojo & Oliver L. Phillips & Jan M. Reitsma & Lee White & James A. Comiskey & Marie-Noël Dj, 2009. "Increasing carbon storage in intact African tropical forests," Nature, Nature, vol. 457(7232), pages 1003-1006, February.
    7. Raj Kumar Bhattacharya & Nilanjana Chatterjee & Kousik Das, 2021. "Land use and Land Cover change and its resultant erosion susceptible level: an appraisal using RUSLE and Logistic Regression in a tropical plateau basin of West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1411-1446, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamila Ngondo & Joseph Mango & Ruiqing Liu & Joel Nobert & Alfonse Dubi & Heqin Cheng, 2021. "Land-Use and Land-Cover (LULC) Change Detection and the Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    2. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    3. Wehkamp, Johanna & Aquino, André & Fuss, Sabine & Reed, Erik W., 2015. "Analyzing the perception of deforestation drivers by African policy makers in light of possible REDD+ policy responses," Forest Policy and Economics, Elsevier, vol. 59(C), pages 7-18.
    4. Hari Prasad Sharma & Bhagawat Rimal & Mingxia Zhang & Sandhya Sharma & Laxman Prasad Poudyal & Sujan Maharjan & Ripu Kunwar & Prativa Kaspal & Namrata Bhandari & Laxmi Baral & Sujita Dhakal & Ashish T, 2020. "Potential Distribution of the Critically Endangered Chinese Pangolin ( Manis pentadactyla ) in Different Land Covers of Nepal: Implications for Conservation," Sustainability, MDPI, vol. 12(3), pages 1-13, February.
    5. Taingaun Sourn & Sophak Pok & Phanith Chou & Nareth Nut & Dyna Theng & Phanna Rath & Manuel R. Reyes & P.V. Vara Prasad, 2021. "Evaluation of Land Use and Land Cover Change and Its Drivers in Battambang Province, Cambodia from 1998 to 2018," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
    6. Sara Karam & Baba-Serges Zango & Ousmane Seidou & Duminda Perera & Nidhi Nagabhatla & Raphael M. Tshimanga, 2023. "Impacts of Climate Change on Hydrological Regimes in the Congo River Basin," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    7. Zhang, Yan & Wu, Tong & Song, Changsu & Hein, Lars & Shi, Faqi & Han, Mingchen & Ouyang, Zhiyun, 2022. "Influences of climate change and land use change on the interactions of ecosystem services in China’s Xijiang River Basin," Ecosystem Services, Elsevier, vol. 58(C).
    8. Muluberhan Biedemariam & Emiru Birhane & Biadgilgn Demissie & Tewodros Tadesse & Girmay Gebresamuel & Solomon Habtu, 2022. "Ecosystem Service Values as Related to Land Use and Land Cover Changes in Ethiopia: A Review," Land, MDPI, vol. 11(12), pages 1-21, December.
    9. Xindong Du & Xiaoke Zhang & Huan Wang & Xiaojuan Zhi & Jianyuan Huang, 2020. "Assessing Green Space Potential Accessibility through Urban Artificial Building Data in Nanjing, China," Sustainability, MDPI, vol. 12(23), pages 1-11, November.
    10. Carlos Rosero & Xosé Otero & Cinthya Bravo & Catherine Frey, 2023. "Multitemporal Incidence of Landscape Fragmentation in a Protected Area of Central Andean Ecuador," Land, MDPI, vol. 12(2), pages 1-21, February.
    11. Joël Masimo Kabuanga & Onésime Mubenga Kankonda & Mehdi Saqalli & Nicolas Maestripieri & Thomas Mumuni Bilintoh & Jean-Pierre Mate Mweru & Aimé Balimbaki Liama & Radar Nishuli & Landing Mané, 2021. "Historical Changes and Future Trajectories of Deforestation in the Ituri-Epulu-Aru Landscape (Democratic Republic of the Congo)," Land, MDPI, vol. 10(10), pages 1-24, October.
    12. Dehuan Li & Wei Sun & Fan Xia & Yixuan Yang & Yujing Xie, 2021. "Can Habitat Quality Index Measured Using the InVEST Model Explain Variations in Bird Diversity in an Urban Area?," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    13. Wang, Jinsong & Gao, Dongdong & Shi, Wei & Du, Jiayan & Huang, Zhuo & Liu, Buyuan, 2023. "Spatio-temporal changes in ecosystem service value: Evidence from the economic development of urbanised regions," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    14. Aryal, Kishor & Maraseni, Tek & Apan, Armando, 2023. "Spatial dynamics of biophysical trade-offs and synergies among ecosystem services in the Himalayas," Ecosystem Services, Elsevier, vol. 59(C).
    15. Mohan Kumar Rai & Basanta Paudel & Yili Zhang & Pashupati Nepal & Narendra Raj Khanal & Linshan Liu & Raju Rai, 2023. "Appraisal of Empirical Studies on Land-Use and Land-Cover Changes and Their Impact on Ecosystem Services in Nepal Himalaya," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    16. P. P. Braga, Daniel & Pokorny, Benno & Porro, Roberto & Vidal, Edson, 2023. "Good life in the Amazon? A critical reflection on the standard of living of cocoa and cattle-based smallholders in Pará, Brazil," World Development Perspectives, Elsevier, vol. 31(C).
    17. Cheng He & Kangning Xiong & Yongkuan Chi & Shuzhen Song & Jinzhong Fang & Shuyu He, 2022. "Effects of Landscape Type Change on Spatial and Temporal Evolution of Ecological Assets in a Karst Plateau-Mountain Area," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    18. Md. Omar Sarif & Rajan Dev Gupta, 2022. "Spatiotemporal mapping of Land Use/Land Cover dynamics using Remote Sensing and GIS approach: a case study of Prayagraj City, India (1988–2018)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 888-920, January.
    19. Yu Chen & Yilian Liu & Shengfu Yang & Chengwu Liu, 2023. "Impact of Land-Use Change on Ecosystem Services in the Wuling Mountains from a Transport Development Perspective," IJERPH, MDPI, vol. 20(2), pages 1-21, January.
    20. Hazem T. Abd El-Hamid & Hoda Nour-Eldin & Nazih Y. Rebouh & Ahmed M. El-Zeiny, 2022. "Past and Future Changes of Land Use/Land Cover and the Potential Impact on Ecosystem Services Value of Damietta Governorate, Egypt," Land, MDPI, vol. 11(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8551-:d:861431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.