IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7399-d840745.html
   My bibliography  Save this article

Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model

Author

Listed:
  • Fengjin Xiao

    (National Climate Center, China Meteorological Administration, 46 Zhonguancun South Avenue, Beijing 100081, China)

  • Qiufeng Liu

    (National Climate Center, China Meteorological Administration, 46 Zhonguancun South Avenue, Beijing 100081, China)

  • Yuqing Xu

    (National Climate Center, China Meteorological Administration, 46 Zhonguancun South Avenue, Beijing 100081, China)

Abstract

The net primary productivity ( NPP ) of vegetation is an essential factor of ecosystem functions, including the biological geochemical carbon cycle, which is often impacted by climate change and human activities. It plays a significant role in comprehending the nature of carbon balance in an ecosystem and demonstrates the global and regional carbon cycle dynamics. The present study used an upgraded CASA model to calculate the NPP in the Yellow River Basin (YRB), China. The model’s simulation ability was improved by changing the model parameters. Further, the CASA model was validated by comparing with MODIS- NPP and in situ observed NPP , wherein the accuracy of the CASA model estimation was found satisfactory to estimate NPP changes in the study area. The simulated results of the improved CASA model showed that the mean annual NPP value of vegetation in the YRB was 283.4 gC m –2 a –1 from 2001 to 2020, with a declining trend in spatial distribution from south to north. In contrast, the NPP appeared as an increasing trend in the YRB temporally from 212 gC m –2 a –1 in 2001 to 342 gC m –2 a –1 in 2020, with a mean annual growth rate of 4.6 gC m –2 a –1 . The total NPP in the YRB increased by 40,088.3 GgC between 2001 and 2020, from 226.06 TgC to 266.15 TgC. This rise can be attributed to the increase in forests. The average grassland area has reduced by 4651 km 2 during the last two decades, significantly impacting the total NPP of grasslands. Although the increase in NPP in wetlands was minimal, accounting for 815.53 GgC, the highest change percentage of 79.78%, could be observed among the six vegetation types due to the anthropogenic influences and climate change. The conditions favorable for vegetation growth and a sustained environment were enhanced by the increased precipitation and temperature and the reinforced ecological protection by the government.

Suggested Citation

  • Fengjin Xiao & Qiufeng Liu & Yuqing Xu, 2022. "Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7399-:d:840745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Yang & Xiaoshuang Li & Yaqi Xian & Yalin Chai & Min Li & Kaidie Yang & Xiaorui Qiu, 2022. "Assessing the Net Primary Productivity Dynamics of the Desert Steppe in Northern China during the Past 20 Years and Its Response to Climate Change," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    2. Lei Hao & Shan Wang & Xiuping Cui & Yongguang Zhai, 2021. "Spatiotemporal Dynamics of Vegetation Net Primary Productivity and Its Response to Climate Change in Inner Mongolia from 2002 to 2019," Sustainability, MDPI, vol. 13(23), pages 1-16, December.
    3. Yuqing Xu & Fengjin Xiao, 2022. "Assessing Changes in the Value of Forest Ecosystem Services in Response to Climate Change in China," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    4. Dong, Xiaobin & Yang, Weikun & Ulgiati, Sergio & Yan, Maochao & Zhang, Xinshi, 2012. "The impact of human activities on natural capital and ecosystem services of natural pastures in North Xinjiang, China," Ecological Modelling, Elsevier, vol. 225(C), pages 28-39.
    5. Zhongwu Zhang & Tianying Chang & Xuning Qiao & Yongju Yang & Jing Guo & Han Zhang, 2021. "Eco-Economic Coordination Analysis of the Yellow River Basin in China: Insights from Major Function-Oriented Zoning," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    6. Zhang, Liang-Xia & Zhou, De-Cheng & Fan, Jiang-Wen & Hu, Zhong-Min, 2015. "Comparison of four light use efficiency models for estimating terrestrial gross primary production," Ecological Modelling, Elsevier, vol. 300(C), pages 30-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Kamangar & Ozgur Kisi & Masoud Minaei, 2023. "Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    2. Wen Li & Jianwei Geng & Jingling Bao & Wenxiong Lin & Zeyan Wu & Shuisheng Fan, 2023. "Analysis of Spatial and Temporal Variations in Ecosystem Service Functions and Drivers in Anxi County Based on the InVEST Model," Sustainability, MDPI, vol. 15(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sannigrahi, Srikanta, 2017. "Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere Region, India using seven ecosystem models," Ecological Modelling, Elsevier, vol. 356(C), pages 73-90.
    2. Lucy Semerjian & Kunle Okaiyeto & Mike O. Ojemaye & Temitope Cyrus Ekundayo & Aboi Igwaran & Anthony I. Okoh, 2021. "Global Systematic Mapping of Road Dust Research from 1906 to 2020: Research Gaps and Future Direction," Sustainability, MDPI, vol. 13(20), pages 1-21, October.
    3. Yanli Gao & Hongbo Li & Yan Song, 2021. "Interaction Relationship between Urbanization and Land Use Multifunctionality: Evidence from Han River Basin, China," Land, MDPI, vol. 10(9), pages 1-21, September.
    4. Mellino, Salvatore & Ripa, Maddalena & Zucaro, Amalia & Ulgiati, Sergio, 2014. "An emergy–GIS approach to the evaluation of renewable resource flows: A case study of Campania Region, Italy," Ecological Modelling, Elsevier, vol. 271(C), pages 103-112.
    5. Jiang, Wei, 2017. "Ecosystem services research in China: A critical review," Ecosystem Services, Elsevier, vol. 26(PA), pages 10-16.
    6. You, L. & Li, Y.P. & Huang, G.H. & Zhang, J.L., 2014. "Modeling regional ecosystem development under uncertainty – A case study for New Binhai District of Tianjin," Ecological Modelling, Elsevier, vol. 288(C), pages 127-142.
    7. Tiecheng Huang & Wenjiang Huang & Kun Wang & Yongkang Li & Zhenhai Li & Yong’an Yang, 2022. "Ecosystem Service Value Estimation of Paddy Field Ecosystems Based on Multi-Source Remote Sensing Data," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    8. Hui Zhang & Juan Fan & Di Gao & Yulin Liu & Huishi Du, 2022. "Effect of Decreasing the Interception of Solar Illuminance by Vegetation on Ground Temperature in Degraded Grasslands," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    9. Song, Wei & Deng, Xiangzheng & Yuan, Yongwei & Wang, Zhan & Li, Zhaohua, 2015. "Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain," Ecological Modelling, Elsevier, vol. 318(C), pages 245-253.
    10. Binyu Ren & Qianfeng Wang & Rongrong Zhang & Xiaozhen Zhou & Xiaoping Wu & Qing Zhang, 2022. "Assessment of Ecosystem Services: Spatio-Temporal Analysis and the Spatial Response of Influencing Factors in Hainan Province," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    11. Linye Zhu & Mingming Shi & Deqin Fan & Kun Tu & Wenbin Sun, 2023. "Analysis of Changes in Vegetation Carbon Storage and Net Primary Productivity as Influenced by Land-Cover Change in Inner Mongolia, China," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    12. Jian Zhang & Meixia Ren & Xin Lu & Yu Li & Jianjun Cao, 2022. "Effect of the Belt and Road Initiatives on Trade and Its Related LUCC and Ecosystem Services of Central Asian Nations," Land, MDPI, vol. 11(6), pages 1-18, June.
    13. Fengjiao Ma & A. Egrinya Eneji & Jintong Liu, 2014. "Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China," Sustainability, MDPI, vol. 6(12), pages 1-20, November.
    14. Lee, Dong Joo & Brown, Mark T., 2021. "Estimating the Value of Global Ecosystem Structure and Productivity: A Geographic Information System and Emergy Based Approach," Ecological Modelling, Elsevier, vol. 439(C).
    15. Guo, Hui & Li, Sien & Kang, Shaozhong & Du, Taisheng & Liu, Wenfeng & Tong, Ling & Hao, Xinmei & Ding, Risheng, 2022. "Comparison of several models for estimating gross primary production of drip-irrigated maize in arid regions," Ecological Modelling, Elsevier, vol. 468(C).
    16. Lina Tang & Alimujiang Kasimu & Haitao Ma & Mamattursun Eziz, 2023. "Monitoring Multi-Scale Ecological Change and Its Potential Drivers in the Economic Zone of the Tianshan Mountains’ Northern Slopes, Xinjiang, China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    17. Mariana Oliveira & Remo Santagata & Serena Kaiser & Yanxin Liu & Chiara Vassillo & Patrizia Ghisellini & Gengyuan Liu & Sergio Ulgiati, 2022. "Socioeconomic and Environmental Benefits of Expanding Urban Green Areas: A Joint Application of i-Tree and LCA Approaches," Land, MDPI, vol. 11(12), pages 1-16, November.
    18. Zhongwu Zhang & Jinyuan Zhang & Liping Liu & Jian Gong & Jinqiang Li & Lei Kang, 2023. "Spatial–Temporal Heterogeneity of Urbanization and Ecosystem Services in the Yellow River Basin," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    19. Oliveira, M. & Zucaro, A. & Santagata, R. & Ulgiati, S., 2022. "Environmental assessment of milk production from local to regional scales," Ecological Modelling, Elsevier, vol. 463(C).
    20. Yanqin Xu & Shuai Han & Chunxiang Shi & Rui Tao & Jiaojiao Zhang & Yu Zhang & Zheng Wang, 2023. "Comparative Analysis of Three Near-Surface Air Temperature Reanalysis Datasets in Inner Mongolia Region," Sustainability, MDPI, vol. 15(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7399-:d:840745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.