IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5581-d809469.html
   My bibliography  Save this article

Assessing the Net Primary Productivity Dynamics of the Desert Steppe in Northern China during the Past 20 Years and Its Response to Climate Change

Author

Listed:
  • Bo Yang

    (College of Tourism, Northwest Normal University, Lanzhou 730070, China)

  • Xiaoshuang Li

    (College of Tourism, Northwest Normal University, Lanzhou 730070, China)

  • Yaqi Xian

    (College of Tourism, Northwest Normal University, Lanzhou 730070, China)

  • Yalin Chai

    (College of Tourism, Northwest Normal University, Lanzhou 730070, China)

  • Min Li

    (College of Tourism, Northwest Normal University, Lanzhou 730070, China)

  • Kaidie Yang

    (College of Tourism, Northwest Normal University, Lanzhou 730070, China)

  • Xiaorui Qiu

    (College of Tourism, Northwest Normal University, Lanzhou 730070, China)

Abstract

The net primary productivity ( NPP ) dynamics in arid and semi-arid ecosystems are critical for regional carbon management. Our study applied a light-utilization-efficiency model (CASA: Carnegie–Ames–Stanford Approach) to evaluate the vegetation NPP dynamics of a desert steppe in northern China over the past 20 years, and its response to climate change. Our results show that the annual average NPP of the desert steppe was 132 g C m −2 y −1 , of which the grass- and shrub-dominated biome values were 142 and 91 g C m −2 y −1 , respectively. The average change rate of NPP was 1.13 g C m −2 y −1 , and in the grassland biome 1.31 g C m −2 y −1 , a value which was significantly higher than that in shrubland, at 0.84 g C m −2 y −1 . The precipitation and temperature at different time scales in the desert steppe showed a slow upward trend, and the degree of aridity tended to weaken. The correlation analysis shows that NPP changes were significantly positively and negatively correlated with precipitation and temperature, respectively. In terms of temperature, 43% of the area was significantly correlated during the growing season, which decreased to 12% on the annual scale. In 31% of the changed areas, the average NPP was 148.1 g C m −2 y −1 , which was higher than the remaining significant areas. This suggests that higher NPP levels help to attenuate the negative effects of high temperature during the growing season on plant productivity in the desert steppe. This improves the understanding of the carbon cycle mechanism of arid and semi-arid ecosystems, which is beneficial to improving sustainable grassland development strategies.

Suggested Citation

  • Bo Yang & Xiaoshuang Li & Yaqi Xian & Yalin Chai & Min Li & Kaidie Yang & Xiaorui Qiu, 2022. "Assessing the Net Primary Productivity Dynamics of the Desert Steppe in Northern China during the Past 20 Years and Its Response to Climate Change," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5581-:d:809469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Zhu & Jianjun Zhao & Zhenhua Zhu & Hongyan Zhang & Zhengxiang Zhang & Xiaoyi Guo & Yunzhi Bi & Li Sun, 2017. "Remotely Sensed Estimation of Net Primary Productivity (NPP) and Its Spatial and Temporal Variations in the Greater Khingan Mountain Region, China," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    2. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    3. Qing Huang & Fangyi Zhang & Qian Zhang & Hui Ou & Yunxiang Jin, 2020. "Quantitative Assessment of the Impact of Human Activities on Terrestrial Net Primary Productivity in the Yangtze River Delta," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    4. Qing Huang & Weimin Ju & Fangyi Zhang & Qian Zhang, 2019. "Roles of Climate Change and Increasing CO 2 in Driving Changes of Net Primary Productivity in China Simulated Using a Dynamic Global Vegetation Model," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengjin Xiao & Qiufeng Liu & Yuqing Xu, 2022. "Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model," Sustainability, MDPI, vol. 14(12), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Hao & Shan Wang & Xiuping Cui & Yongguang Zhai, 2021. "Spatiotemporal Dynamics of Vegetation Net Primary Productivity and Its Response to Climate Change in Inner Mongolia from 2002 to 2019," Sustainability, MDPI, vol. 13(23), pages 1-16, December.
    2. Chi Zhang & Shaohong Wu & Yu Deng & Jieming Chou, 2021. "How the Updated Earth System Models Project Terrestrial Gross Primary Productivity in China under 1.5 and 2 °C Global Warming," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    3. Kalt, Gerald & Mayer, Andreas & Haberl, Helmut & Kaufmann, Lisa & Lauk, Christian & Matej, Sarah & Röös, Elin & Theurl, Michaela C. & Erb, Karl-Heinz, 2021. "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0," Ecological Modelling, Elsevier, vol. 459(C).
    4. Vlada Vitunskienė & Akvilė Aleksandravičienė & Neringa Ramanauskė, 2022. "Spatio-Temporal Assessment of Biomass Self-Sufficiency in the European Union," Sustainability, MDPI, vol. 14(3), pages 1-19, February.
    5. Andreas Mayer & Gerald Kalt & Lisa Kaufmann & Elin Röös & Adrian Muller & Rainer Weisshaidinger & Anita Frehner & Nicolas Roux & Pete Smith & Michaela C. Theurl & Sarah Matej & Karlheinz Erb, 2022. "Impacts of Scaling up Agroecology on the Sustainability of European Agriculture in 2050," EuroChoices, The Agricultural Economics Society, vol. 21(3), pages 27-36, December.
    6. Qing Huang & Fangyi Zhang & Qian Zhang & Hui Ou & Yunxiang Jin, 2020. "Quantitative Assessment of the Impact of Human Activities on Terrestrial Net Primary Productivity in the Yangtze River Delta," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    7. Cheng Li & Ranghui Wang & Fangmin Zhang & Yunjian Luo & Yong Huang, 2019. "Relationships between Ecosystem Services and Urbanization in Jiangsu Province, Eastern China," Sustainability, MDPI, vol. 11(7), pages 1-13, April.
    8. Syed Muhammad Hassan Raza & Syed Amer Mahmood, 2018. "Estimation of Net Rice Production through Improved CASA Model by Addition of Soil Suitability Constant (ħα)," Sustainability, MDPI, vol. 10(6), pages 1-21, May.
    9. Ruiming Cheng & Jing Zhang & Xinyue Wang & Zhidong Zhang, 2022. "Growth Suitability Evaluation of Larix principis-rupprechtii Mayr Based on Potential NPP under Different Climate Scenarios," Sustainability, MDPI, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5581-:d:809469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.