IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6656-d827289.html
   My bibliography  Save this article

Coordinated Design of Type-2 Fuzzy Lead–Lag-Structured SSSCs and PSSs for Power System Stability Improvement

Author

Listed:
  • Prabodh Khampariya

    (Department of EEE, Sri Satya Sai University of Technology & Medical Sciences, Sehore 466001, India)

  • Sidhartha Panda

    (Department of Electrical Engineering, Veer Surendra Sai University of Technology, Odisha 768018, India)

  • Hisham Alharbi

    (Electrical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Almoataz Y. Abdelaziz

    (Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Sherif S. M. Ghoneim

    (Electrical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

Abstract

This work suggests a type-2 fuzzy lead–lag (T2FLL) controller structure for flexible AC transmission system (FACTS)-based damping controllers and power system stabilizers (PSSs) for power system stability improvement. The values of the suggested controller are optimized by a hybrid adaptive differential evolution and pattern search algorithm (hADE-PS) method. Initially, a single-machine infinite-bus (SMIB) system with lead–lag (LL)-structured FACTS and PSS controllers is considered, and the dominance of the hADE-PS method is established over the original differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). The supremacy of T2FLL over the lead–lag (LL) controller is established under different large and small disturbance conditions, as well as varied loading conditions and fault positions. Lastly, the effectiveness of T2FLL is evaluated in a multimachine power system (MMPS). It is demonstrated that the suggested T2FLL offers better performance than the LL controller under various large and small disturbance conditions by providing significantly more damping to all modes of oscillations.

Suggested Citation

  • Prabodh Khampariya & Sidhartha Panda & Hisham Alharbi & Almoataz Y. Abdelaziz & Sherif S. M. Ghoneim, 2022. "Coordinated Design of Type-2 Fuzzy Lead–Lag-Structured SSSCs and PSSs for Power System Stability Improvement," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6656-:d:827289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Biswas, Partha P. & Suganthan, P.N. & Wu, Guohua & Amaratunga, Gehan A.J., 2019. "Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 132(C), pages 425-438.
    2. B. D. Rout & B. B. Pati & Sidhartha Panda, 2018. "A hybrid modified differential evolution-pattern search approach for SSSC based damping controller design under communication constraints," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 962-971, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullrahman A. Al-Shamma’a & Hammed O. Omotoso & Fahd A. Alturki & Hassan. M. H. Farh & Abdulaziz Alkuhayli & Khalil Alsharabi & Abdullah M. Noman, 2021. "Parameter Estimation of Photovoltaic Cell/Modules Using Bonobo Optimizer," Energies, MDPI, vol. 15(1), pages 1-22, December.
    2. Arabshahi, M.R. & Torkaman, H. & Keyhani, A., 2020. "A method for hybrid extraction of single-diode model parameters of photovoltaics," Renewable Energy, Elsevier, vol. 158(C), pages 236-252.
    3. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    4. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    5. Carlos Cárdenas-Bravo & Rodrigo Barraza & Antonio Sánchez-Squella & Patricio Valdivia-Lefort & Federico Castillo-Burns, 2021. "Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries," Energies, MDPI, vol. 14(13), pages 1-24, June.
    6. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    7. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    8. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    10. Ridha, Hussein Mohammed & Hizam, Hashim & Mirjalili, Seyedali & Othman, Mohammad Lutfi & Ya'acob, Mohammad Effendy & Ahmadipour, Masoud, 2022. "Parameter extraction of single, double, and three diodes photovoltaic model based on guaranteed convergence arithmetic optimization algorithm and modified third order Newton Raphson methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    12. Hasnat Bin Tariq & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Maximum-Likelihood-Based Adaptive and Intelligent Computing for Nonlinear System Identification," Mathematics, MDPI, vol. 9(24), pages 1-23, December.
    13. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    14. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    15. Wang, Shinong & Luo, Huan & Ge, Yuan & Liu, Shilin, 2021. "A new approach for modeling photovoltaic modules based on difference equation," Renewable Energy, Elsevier, vol. 168(C), pages 85-96.
    16. Katyayani Kashyap & Tarun K. Sharma & Jitendra Rajpurohit, 2020. "Logistic map and wavelet transform based differential evolution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 506-514, April.
    17. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    18. Alma Rodríguez & Avelina Alejo-Reyes & Erik Cuevas & Héctor R. Robles-Campos & Julio C. Rosas-Caro, 2020. "Numerical Optimization of Switching Ripples in the Double Dual Boost Converter through the Evolutionary Algorithm L-SHADE," Mathematics, MDPI, vol. 8(11), pages 1-20, October.
    19. Ram Ishwar Vais & Kuldeep Sahay & Tirumalasetty Chiranjeevi & Ramesh Devarapalli & Łukasz Knypiński, 2023. "Parameter Extraction of Solar Photovoltaic Modules Using a Novel Bio-Inspired Swarm Intelligence Optimisation Algorithm," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    20. Yu, Fei & Huang, Gongyi & Xu, Chuanzhong, 2020. "An explicit method to extract fitting parameters in lumped-parameter equivalent circuit model of industrial solar cells," Renewable Energy, Elsevier, vol. 146(C), pages 2188-2198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6656-:d:827289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.