IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5827-d813375.html
   My bibliography  Save this article

Evaluation of Decarbonization Technologies for ASEAN Countries via an Integrated Assessment Tool

Author

Listed:
  • Hon Chung Lau

    (Low Carbon Energies, Houston, TX 77401, USA
    Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA)

Abstract

A new assessment tool for evaluating decarbonization technologies that considers each technology’s sustainability, security, affordability, readiness, and impact for a specific country is proposed. This tool is applied to a set of decarbonization technologies for the power, transport, and industry sectors for the ten Southeast Asian countries that constitute ASEAN. This results in a list of the most promising decarbonization technologies, as well as the remaining issues that need more research and development. This study reveals several common themes for ASEAN’s decarbonization. First, carbon capture and storage (CCS) is a key technology for large-scale CO 2 emission. Second, for countries that rely heavily on coal for power generation, switching to gas can halve their CO 2 emission in the power sector and should be given high priority. Third, hydropower and bioenergy both have high potential for the majority of ASEAN countries if their sustainability issues can be resolved satisfactorily. Fourth, replacing conventional vehicles by electric vehicles is the overarching theme in the road transport sector, but will result in increased demand for electricity. In the medium to long term, the use of hydrogen for marine fuel and biofuels for aviation fuel are preferred solutions for the marine and aviation transport sectors. Fifth, for the industry sector, installing CCS in industrial plants should be given priority, but replacing fossil fuels by blue hydrogen for high-temperature heating is the preferred long-term solution.

Suggested Citation

  • Hon Chung Lau, 2022. "Evaluation of Decarbonization Technologies for ASEAN Countries via an Integrated Assessment Tool," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5827-:d:813375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hon Chung Lau & Kai Zhang & Harsha Kumar Bokka & Seeram Ramakrishna, 2022. "A Review of the Status of Fossil and Renewable Energies in Southeast Asia and Its Implications on the Decarbonization of ASEAN," Energies, MDPI, vol. 15(6), pages 1-30, March.
    2. Zhang, Kai & Lau, Hon Chung & Bokka, Harsha Kumar & Hadia, Nanji J., 2022. "Decarbonizing the power and industry sectors in India by carbon capture and storage," Energy, Elsevier, vol. 249(C).
    3. Hon Chung Lau & Seeram Ramakrishna & Kai Zhang & Mohamed Ziaudeen Shahul Hameed, 2021. "A Decarbonization Roadmap for Singapore and Its Energy Policy Implications," Energies, MDPI, vol. 14(20), pages 1-23, October.
    4. S. Kumar & P. Abdul Salam & Pujan Shrestha & Emmanuel Kofi Ackom, 2013. "An Assessment of Thailand’s Biofuel Development," Sustainability, MDPI, vol. 5(4), pages 1-21, April.
    5. Oh, Tick Hui, 2010. "Carbon capture and storage potential in coal-fired plant in Malaysia--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2697-2709, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hon Chung Lau & Steve C. Tsai, 2022. "A Decarbonization Roadmap for Taiwan and Its Energy Policy Implications," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    2. Kazeem Alasinrin Babatunde & Moamin A. Mahmoud & Nazrita Ibrahim & Fathin Faizah Said, 2023. "Malaysia’s Electricity Decarbonisation Pathways: Exploring the Role of Renewable Energy Policies Using Agent-Based Modelling," Energies, MDPI, vol. 16(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hon Chung Lau & Kai Zhang & Harsha Kumar Bokka & Seeram Ramakrishna, 2022. "A Review of the Status of Fossil and Renewable Energies in Southeast Asia and Its Implications on the Decarbonization of ASEAN," Energies, MDPI, vol. 15(6), pages 1-30, March.
    2. Hon Chung Lau & Steve C. Tsai, 2022. "A Decarbonization Roadmap for Taiwan and Its Energy Policy Implications," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    3. Bokka, Harsha Kumar & Lau, Hon Chung, 2023. "Decarbonising Vietnam's power and industry sectors by carbon capture and storage," Energy, Elsevier, vol. 262(PA).
    4. Rebitanim, Nur Zalikha & Wan Ab Karim Ghani, Wan Azlina & Rebitanim, Nur Akmal & Amran Mohd Salleh, Mohamad, 2013. "Potential applications of wastes from energy generation particularly biochar in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 694-702.
    5. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    6. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    7. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    8. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    9. An, Xuefei & Li, Tongxin & Chen, Jiaqi & Fu, Dong, 2023. "3D-hierarchical porous functionalized carbon aerogel from renewable cellulose: An innovative solid-amine adsorbent with high CO2 adsorption performance," Energy, Elsevier, vol. 274(C).
    10. Snovia Naseem & Umair Kashif & Yasir Rasool & Muhammad Akhtar, 2024. "The impact of financial innovation, green energy, and economic growth on transport-based CO2 emissions in India: insights from QARDL approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28823-28842, November.
    11. Schifflechner, Christopher & de Reus, Jasper & Schuster, Sebastian & Corpancho Villasana, Andreas & Brillert, Dieter & Saar, Martin O. & Spliethoff, Hartmut, 2024. "Paving the way for CO2-Plume Geothermal (CPG) systems: A perspective on the CO2 surface equipment," Energy, Elsevier, vol. 305(C).
    12. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    13. Jiang, Xueting, 2022. "Drivers of air pollution reduction paradox: Empirical evidence from directly measured unit-level data of Chinese power plants," Energy, Elsevier, vol. 254(PB).
    14. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    15. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    16. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.
    17. Farooq, Umar & Wen, Jun & Tabash, Mosab I. & Fadoul, Modawi, 2024. "Environmental regulations and capital investment: Does green innovation allow to grow?," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 878-893.
    18. Luqman Razzaq & Muhammad Farooq & M. A. Mujtaba & Farooq Sher & Muhammad Farhan & Muhammad Tahir Hassan & Manzoore Elahi M. Soudagar & A. E. Atabani & M. A. Kalam & Muhammad Imran, 2020. "Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    19. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    20. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5827-:d:813375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.