IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5798-d812905.html
   My bibliography  Save this article

Implications of the Relocation Type and Frequency for Shared Autonomous Bike Service: Comparison between the Inner and Complete City Scenarios for Magdeburg as a Case Study

Author

Listed:
  • Imen Haj Salah

    (Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Vasu Dev Mukku

    (Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Malte Kania

    (Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Tom Assmann

    (Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Hartmut Zadek

    (Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

Abstract

Finding a sustainable mobility solution for the future is one of the most competitive challenges in the logistics and transportation sector nowadays. Researchers, universities, and companies are working intensively to provide novel mobility options that can be environmentally friendly and sustainable. While autonomous car-sharing services have been introduced as a very promising solution, an innovative alternative is arising using self-driving bikes. Shared autonomous cargo bike fleets are likely to increase the livability and sustainability of the city as the use of cargo bikes in an on-demand mobility service can replace the use of cars for short-distance trips and enhance connectivity to public transportation. However, more research is still needed to develop this new concept. To address this research gap, this paper examines the on-demand shared-use autonomous bikes service (OSABS) from a fleet management perspective. In fact, such a system requires good management strategies in order to ensure its efficiency. Through an agent-based simulation of a case study in Magdeburg, we investigate various parameters that can influence the performance and the service quality of OSABS such as the rebalancing frequency and the relocation type. Tests were performed for two different operational areas: the inner city and the complete city of Magdeburg. We conclude with different management insights for an optimized functioning of the system.

Suggested Citation

  • Imen Haj Salah & Vasu Dev Mukku & Malte Kania & Tom Assmann & Hartmut Zadek, 2022. "Implications of the Relocation Type and Frequency for Shared Autonomous Bike Service: Comparison between the Inner and Complete City Scenarios for Magdeburg as a Case Study," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5798-:d:812905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5798/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    2. Christine Fricker & Nicolas Gast, 2016. "Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 261-291, August.
    3. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    4. Konstanze Winter & Oded Cats & Karel Martens & Bart Arem, 2021. "Relocating shared automated vehicles under parking constraints: assessing the impact of different strategies for on-street parking," Transportation, Springer, vol. 48(4), pages 1931-1965, August.
    5. Zhang, Dong & Yu, Chuhang & Desai, Jitamitra & Lau, H.Y.K. & Srivathsan, Sandeep, 2017. "A time-space network flow approach to dynamic repositioning in bicycle sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 188-207.
    6. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    7. Muhammad Usama & Yongjun Shen & Onaira Zahoor, 2019. "Towards an Energy Efficient Solution for Bike-Sharing Rebalancing Problems: A Battery Electric Vehicle Scenario," Energies, MDPI, vol. 12(13), pages 1-21, June.
    8. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Cheng, Yao & Wang, Junwei & Wang, Yan, 2021. "A user-based bike rebalancing strategy for free-floating bike sharing systems: A bidding model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    10. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    11. Erdoğan, Güneş & Laporte, Gilbert & Wolfler Calvo, Roberto, 2014. "The static bicycle relocation problem with demand intervals," European Journal of Operational Research, Elsevier, vol. 238(2), pages 451-457.
    12. Ho, Sin C. & Szeto, W.Y., 2017. "A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 340-363.
    13. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    14. Chen, T. Donna & Kockelman, Kara M. & Hanna, Josiah P., 2016. "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 243-254.
    15. Haider, Zulqarnain & Nikolaev, Alexander & Kang, Jee Eun & Kwon, Changhyun, 2018. "Inventory rebalancing through pricing in public bike sharing systems," European Journal of Operational Research, Elsevier, vol. 270(1), pages 103-117.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yao & Wang, Junwei & Wang, Yan, 2021. "A user-based bike rebalancing strategy for free-floating bike sharing systems: A bidding model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    3. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    4. Zhang, Yuhan & Shao, Yichang & Bi, Hui & Aoyong, Li & Ye, Zhirui, 2023. "Bike-sharing systems rebalancing considering redistribution proportions: A user-based repositioning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    5. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    6. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    7. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    8. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    9. Chuanxiang Ren & Hui Xu & Changchang Yin & Liye Zhang & Chunxu Chai & Qiu Meng & Fangfang Fu, 2023. "Research on Hybrid Scheduling of Shared Bikes Based on MLP-GA Method," Sustainability, MDPI, vol. 15(24), pages 1-23, December.
    10. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    11. Kwiatkowski Michał Adam, 2018. "Urban Cycling as an Indicator of Socio-Economic Innovation and Sustainable Transport," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 23-32, December.
    12. Jiaoe Wang & Jie Huang & Michael Dunford, 2019. "Rethinking the Utility of Public Bicycles: The Development and Challenges of Station-Less Bike Sharing in China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    13. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    14. Ye Ding & Jiantong Zhang & Jiaqing Sun, 2022. "Branch-and-Price-and-Cut for the Heterogeneous Fleet and Multi-Depot Static Bike Rebalancing Problem with Split Load," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    15. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    16. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    17. Georgia Aifadopoulou & Georgios Tsaples & Josep Maria Salanova Grau & Ioannis Mallidis & Nikolaos Sariannidis, 2022. "Management of resource allocation on vehicle-sharing schemes: the case of Thessaloniki’s bike-sharing system," Operational Research, Springer, vol. 22(2), pages 1001-1016, April.
    18. Sharon Datner & Tal Raviv & Michal Tzur & Daniel Chemla, 2019. "Setting Inventory Levels in a Bike Sharing Network," Service Science, INFORMS, vol. 53(1), pages 62-76, February.
    19. Cai, Yutong & Ong, Ghim Ping & Meng, Qiang, 2022. "Dynamic bicycle relocation problem with broken bicycles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    20. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5798-:d:812905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.