IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5110-d548149.html
   My bibliography  Save this article

Optimizing the Power Generation of a Wind Farm in Low Wind Speed Regions

Author

Listed:
  • Hanan M. Taleb

    (Faculty of Engineering & IT, British University in Dubai, Dubai 345015, United Arab Emirates)

  • Bassam Abu Hijleh

    (Faculty of Engineering & IT, British University in Dubai, Dubai 345015, United Arab Emirates)

Abstract

The aim of this research is to optimize the power generation of a wind farm (WF) in order to maximize the energy output, especially in low wind speeds regions such as UAE. A new WF was proposed to be built in Sir Bani Yas Island in the UAE. This project was chosen to act as the main case configuration for this research. Four configuration parameters were proposed and assessed as follows: (1) inserting smaller turbines between the original larger main turbines; (2) changing the spacing between the turbines; (3) substituting new higher efficiency turbines in place of the existing ones; (4) moving the WFs to completely new locations in different emirates within the UAE. Through using the WindFarm simulation software, the impact of these four strategies was analyzed and calculated. The main finding of this research indicates that introducing more efficient WT units has a great impact in that it can increase output by 24.5%. Bearing in mind that the UAE has a vision for a renewable energy, as well as the Gulf Cooperation Council (GCC) countries, this paper will draw a novel recommendation to optimize the wind power generation in this low-speed region.

Suggested Citation

  • Hanan M. Taleb & Bassam Abu Hijleh, 2021. "Optimizing the Power Generation of a Wind Farm in Low Wind Speed Regions," Sustainability, MDPI, vol. 13(9), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5110-:d:548149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Wu, Yuan-Kang, 2016. "Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1048-1059.
    2. Wu, Yu-Ting & Porté-Agel, Fernando, 2015. "Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm," Renewable Energy, Elsevier, vol. 75(C), pages 945-955.
    3. Rehman, Shafiqur & Ahmad, Aftab & Al-Hadhrami, Luai M., 2011. "Development and economic assessment of a grid connected 20Â MW installed capacity wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 833-838, January.
    4. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
    5. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    6. Jamil, M. & Ahmad, Farzana & Jeon, Y.J., 2016. "Renewable energy technologies adopted by the UAE: Prospects and challenges – A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1181-1194.
    7. Al-Amir, Jawaher & Abu-Hijleh, Bassam, 2013. "Strategies and policies from promoting the use of renewable energy resource in the UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 660-667.
    8. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    9. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
    10. Al-Nassar, W. & Alhajraf, S. & Al-Enizi, A. & Al-Awadhi, L., 2005. "Potential wind power generation in the State of Kuwait," Renewable Energy, Elsevier, vol. 30(14), pages 2149-2161.
    11. Feng, Ju & Shen, Wen Zhong, 2015. "Solving the wind farm layout optimization problem using random search algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 182-192.
    12. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    13. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zbigniew Skibko & Magdalena Tymińska & Wacław Romaniuk & Andrzej Borusiewicz, 2021. "Impact of the Wind Turbine on the Parameters of the Electricity Supply to an Agricultural Farm," Sustainability, MDPI, vol. 13(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brogna, Roberto & Feng, Ju & Sørensen, Jens Nørkær & Shen, Wen Zhong & Porté-Agel, Fernando, 2020. "A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain," Applied Energy, Elsevier, vol. 259(C).
    2. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    3. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Wind farm layout optimization with a three-dimensional Gaussian wake model," Renewable Energy, Elsevier, vol. 159(C), pages 553-569.
    4. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Nonuniform wind farm layout optimization: A state-of-the-art review," Energy, Elsevier, vol. 209(C).
    5. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2018. "Continuous adjoint formulation for wind farm layout optimization: A 2D implementation," Applied Energy, Elsevier, vol. 228(C), pages 2333-2345.
    7. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    8. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2020. "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods," Applied Energy, Elsevier, vol. 261(C).
    9. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    10. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    11. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    12. Cao, Jiu Fa & Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Sun, Zhen Ye, 2020. "Optimizing wind energy conversion efficiency with respect to noise: A study on multi-criteria wind farm layout design," Renewable Energy, Elsevier, vol. 159(C), pages 468-485.
    13. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).
    14. Sun, Haiying & Yang, Hongxing & Gao, Xiaoxia, 2019. "Investigation into spacing restriction and layout optimization of wind farm with multiple types of wind turbines," Energy, Elsevier, vol. 168(C), pages 637-650.
    15. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    16. Lo Brutto, Ottavio A. & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2017. "Assessing the effectiveness of a global optimum strategy within a tidal farm for power maximization," Applied Energy, Elsevier, vol. 204(C), pages 653-666.
    17. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    18. Cazzaro, Davide & Trivella, Alessio & Corman, Francesco & Pisinger, David, 2022. "Multi-scale optimization of the design of offshore wind farms," Applied Energy, Elsevier, vol. 314(C).
    19. Hu, Weicheng & Yang, Qingshan & Chen, Hua-Peng & Guo, Kunpeng & Zhou, Tong & Liu, Min & Zhang, Jian & Yuan, Ziting, 2022. "A novel approach for wind farm micro-siting in complex terrain based on an improved genetic algorithm," Energy, Elsevier, vol. 251(C).
    20. Yang, Xiaolei & Pakula, Maggie & Sotiropoulos, Fotis, 2018. "Large-eddy simulation of a utility-scale wind farm in complex terrain," Applied Energy, Elsevier, vol. 229(C), pages 767-777.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5110-:d:548149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.