IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4102-d531492.html
   My bibliography  Save this article

Assessment of State Transition Dynamics of Coastal Wetlands in Northern Venice Lagoon, Italy

Author

Listed:
  • Andrea Taramelli

    (Istituto Universitario di Studi Superiori di Pavia (IUSS), Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
    Institute for Environmental Protection and Research (ISPRA), via Vitaliano Brancati 48, 00144 Rome, Italy)

  • Emiliana Valentini

    (Institute for Environmental Protection and Research (ISPRA), via Vitaliano Brancati 48, 00144 Rome, Italy
    Institute of Polar Sciences of the Italian National Research Council (ISP CNR), via Salaria km 29, 300-00015 Rome, Italy)

  • Laura Piedelobo

    (Istituto Universitario di Studi Superiori di Pavia (IUSS), Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy)

  • Margherita Righini

    (Istituto Universitario di Studi Superiori di Pavia (IUSS), Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy)

  • Sergio Cappucci

    (Territorial and Production Systems Sustainability Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), via Anguillarese 301, 00123 Rome, Italy)

Abstract

Coastal wetlands represent particularly valuable natural resources, characterized by the interaction between their geomorphological and biological components. Their adaptation to the changing conditions depends on the rate and extent of spatial and temporal processes and their response is still not fully understood. This work aims at detecting and improving the understanding of the transition dynamics on eco-geomorphological structures in a coastal wetland ecosystem. The approach could support sustainable habitat management improving the detection and optimizing the offer of Earth Observation (EO) products for coastal system monitoring. Such course of action will strengthen evidence-based policy making, surface biophysical data sovereignty and the Space Data downstream sector through remote sensing techniques thanks to the capability of investigating larger scale and short-to-long-term dynamics. The selected case study is the Lido basin (Venice Lagoon, Italy). Our methodology offers a support in the framework of nature-based solutions, allowing the identification of ecosystem-level indicators of the surface biophysical properties influencing stability and evolution of intertidal flats on which a conceptual model is implemented. Landsat satellite imagery is used to delineate the spatial and temporal variability of the main vegetation and sediment typologies in 1990–2011. Within this period, specific anthropic activities were carried out for morphological restoration and flood protection interventions. Specifically, the lower saltmarsh shows its more fragmented part in the Baccan islet, a residual sandy spit in front of the Lido inlet. The area covered by Sarcocornia-Limonium , that triggers sediment deposition, has fluctuated yearly, from a minimum coverage of 13% to a maximum of 50%. The second decade (2001–2009) is identified as the period with major changes of halophytic and Algae-Biofilm cover typologies distribution. The power law and related thresholds, representing the patch size frequency distribution, is an indicator of the ecosystem state transition dynamics. The approach, based on multi-temporal and spatial EO analysis, is scalable elsewhere, from regional to local-to-global scale, considering the variability of climate data and anthropogenic activities. The present research also supports sustainable habitat management, improving the detection, and optimizing the offer of EO products for coastal system monitoring.

Suggested Citation

  • Andrea Taramelli & Emiliana Valentini & Laura Piedelobo & Margherita Righini & Sergio Cappucci, 2021. "Assessment of State Transition Dynamics of Coastal Wetlands in Northern Venice Lagoon, Italy," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4102-:d:531492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William E. Dietrich & J. Taylor Perron, 2006. "The search for a topographic signature of life," Nature, Nature, vol. 439(7075), pages 411-418, January.
    2. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    3. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boyan Bontchev & Albena Antonova & Valentina Terzieva & Yavor Dankov, 2021. "“Let Us Save Venice”—An Educational Online Maze Game for Climate Resilience," Sustainability, MDPI, vol. 14(1), pages 1-23, December.
    2. Vidya Anderson & Manavvi Suneja & Jelena Dunjic, 2023. "Sensing and Measurement Techniques for Evaluation of Nature-Based Solutions: A State-of-the-Art Review," Land, MDPI, vol. 12(8), pages 1-39, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasilis Dakos & Stephen R Carpenter & William A Brock & Aaron M Ellison & Vishwesha Guttal & Anthony R Ives & Sonia Kéfi & Valerie Livina & David A Seekell & Egbert H van Nes & Marten Scheffer, 2012. "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-20, July.
    2. Zeng, Chunhua & Wang, Hua, 2012. "Noise and large time delay: Accelerated catastrophic regime shifts in ecosystems," Ecological Modelling, Elsevier, vol. 233(C), pages 52-58.
    3. Florian Wagener, 2013. "Shallow lake economics run deep: nonlinear aspects of an economic-ecological interest conflict," Computational Management Science, Springer, vol. 10(4), pages 423-450, December.
    4. Kevin Thellmann & Marc Cotter & Sabine Baumgartner & Anna Treydte & Georg Cadisch & Folkard Asch, 2018. "Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    5. Ren, Bijie & Polasky, Stephen, 2014. "The optimal management of renewable resources under the risk of potential regime shift," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 195-212.
    6. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    7. Crépin, Anne-Sophie & Biggs, Reinette & Polasky, Stephen & Troell, Max & de Zeeuw, Aart, 2012. "Regime shifts and management," Ecological Economics, Elsevier, vol. 84(C), pages 15-22.
    8. William A Brock & Stephen R Carpenter, 2012. "Early Warnings of Regime Shift When the Ecosystem Structure Is Unknown," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    9. Tatiana Baumuratova & Simona Dobre & Thierry Bastogne & Thomas Sauter, 2013. "Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    10. Zejie Zhou & Boleslaw K Szymanski & Jianxi Gao, 2020. "Modeling competitive evolution of multiple languages," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-16, May.
    11. de Zeeuw, Aart, 2017. "Integrating Economics and the Environment," Other publications TiSEM 8c8f2f81-5797-4429-9066-e, Tilburg University, School of Economics and Management.
    12. Steven J. Lade & Alessandro Tavoni & Simon A. Levin & Maja Schl�ter, 2013. "Regime shifts in a social-ecological system," GRI Working Papers 105, Grantham Research Institute on Climate Change and the Environment.
    13. Krishnadas M. & K. P. Harikrishnan & G. Ambika, 2022. "Recurrence measures and transitions in stock market dynamics," Papers 2208.03456, arXiv.org.
    14. Kiran D’Souza & Bogdan I Epureanu & Mercedes Pascual, 2015. "Forecasting Bifurcations from Large Perturbation Recoveries in Feedback Ecosystems," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-19, September.
    15. Lumi, Neeme & Laas, Katrin & Mankin, Romi, 2015. "Rising relative fluctuation as a warning indicator of discontinuous transitions in symbiotic metapopulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 109-118.
    16. Georg Jäger & Manfred Füllsack, 2019. "Systematically false positives in early warning signal analysis," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-14, February.
    17. Acosta-Arreola, Jaime & Domínguez-Hüttinger, Elisa & Aguirre, Pablo & González, Nicolás & Meave, Jorge A., 2023. "Predicting dynamic trajectories of a protected plant community under contrasting conservation regimes: Insights from data-based modelling," Ecological Modelling, Elsevier, vol. 484(C).
    18. Ferdinando Villa & Kenneth J Bagstad & Brian Voigt & Gary W Johnson & Rosimeiry Portela & Miroslav Honzák & David Batker, 2014. "A Methodology for Adaptable and Robust Ecosystem Services Assessment," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-18, March.
    19. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Gregory S. Fivash & Stijn Temmerman & Maarten G. Kleinhans & Maike Heuner & Tjisse Heide & Tjeerd J. Bouma, 2023. "Early indicators of tidal ecosystem shifts in estuaries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4102-:d:531492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.