IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3155-d516264.html
   My bibliography  Save this article

Impacts of Different Tillage Practices on Soil Water Infiltration for Sustainable Agriculture

Author

Listed:
  • Roua Amami

    (Higher Institute of Agricultural Sciences, University of Sousse, 4042 Chott Meriem, Tunisia)

  • Khaled Ibrahimi

    (Higher Institute of Agricultural Sciences, University of Sousse, 4042 Chott Meriem, Tunisia)

  • Farooq Sher

    (School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, UK
    Institute for Future Transport and Cities, Coventry University, Priory Street, Coventry CV1 5FB, UK)

  • Paul Milham

    (Hawkesbury Institute for the Environment, Western Sydney University, LB 1797, Penrith 2751, NSW, Australia)

  • Hiba Ghazouani

    (Regional Centre for Field Crop Researches, 9000 Beja, Tunisia)

  • Sayed Chehaibi

    (Higher Institute of Agricultural Sciences, University of Sousse, 4042 Chott Meriem, Tunisia)

  • Zahra Hussain

    (Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
    International Society of Engineering Science and Technology, Coventry CV1 5EH, UK)

  • Hafiz M. N. Iqbal

    (Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico)

Abstract

Over the years, cultivation using sustainable tillage practices has gained significant importance, but the impact of tillage on soil water infiltration is still a concern for landowners due to the possible effects on crop yield. This study investigates the impact of different tillage managements on the infiltration rate of sandy clay loam soil under a semiarid environment. Field experiments were conducted in Chott Mariem Sousse, Tunisia. The tillage practices consisted of three treatments, including a tine cultivator (TC, 16 cm), moldboard plows (MP, 36 cm) and no-tillage (NT). Three infiltration models, Kostiakov, Philip and Horton, were applied to adjust the observed data and evaluate the infiltration characteristics of the studied soils. Comparison criteria, including the coefficient of determination (R 2 ), along with the root mean square error (RMSE) and mean absolute error (MAE), were used to investigate the best-fit model. The results showed that moldboard plowing enhanced soil infiltration capacity relative to tine cultivation and no-tillage treatments. The mean saturated hydraulic conductivity was highest under MP, while it was lowest in NT, with 33.4% and 34.1% reduction compared to TC and MP, respectively. Based on the obtained results, Philip’s model showed better results with observed infiltration due to a higher R 2 (0.981, 0.973 and 0.967), lower RMSE (3.36, 9.04 and 9.21) and lower MAE (1.46, 3.53 and 3.72) recorded, respectively, for NT, MP and TC. Horton’s model had a low regression coefficient between observed and predicted values. It was suggested that the Philip two-term model can adequately describe the infiltration process in the study area.

Suggested Citation

  • Roua Amami & Khaled Ibrahimi & Farooq Sher & Paul Milham & Hiba Ghazouani & Sayed Chehaibi & Zahra Hussain & Hafiz M. N. Iqbal, 2021. "Impacts of Different Tillage Practices on Soil Water Infiltration for Sustainable Agriculture," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3155-:d:516264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silva, Luis Leopoldo, 2007. "Fitting infiltration equations to centre-pivot irrigation data in a Mediterranean soil," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 83-92, December.
    2. Karen Denisse Ordoñez-Morales & Martin Cadena-Zapata & Alejandro Zermeño-González & Santos Campos-Magaña, 2019. "Effect of Tillage Systems on Physical Properties of a Clay Loam Soil under Oats," Agriculture, MDPI, vol. 9(3), pages 1-14, March.
    3. Truman, C.C. & Potter, T.L. & Nuti, R.C. & Franklin, D.H. & Bosch, D.D., 2011. "Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols," Agricultural Water Management, Elsevier, vol. 98(8), pages 1189-1196, May.
    4. Silva, Luis Leopoldo, 2006. "The effect of spray head sprinklers with different deflector plates on irrigation uniformity, runoff and sediment yield in a Mediterranean soil," Agricultural Water Management, Elsevier, vol. 85(3), pages 243-252, October.
    5. Shoja Ghorbani Dashtaki & Mehdi Homaee & Mohammad Mahdian & Mehdi Kouchakzadeh, 2009. "Site-Dependence Performance of Infiltration Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2777-2790, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José V. Gaspareto & Jocenei A. T. de Oliveira & Everton Andrade & Luiz F. Pires, 2023. "Representative Elementary Volume as a Function of Land Uses and Soil Processes Based on 3D Pore System Analysis," Agriculture, MDPI, vol. 13(3), pages 1-20, March.
    2. Ridha Boudiar & Khalid S. Alshallash & Khadiga Alharbi & Salah A. Okasha & Mohammed Fenni & Abdelhamid Mekhlouf & Bilal Fortas & Keirieddine Hamsi & Kamel Nadjem & Abdennour Belagrouz & Elsayed Mansou, 2022. "Influence of Tillage and Cropping Systems on Soil Properties and Crop Performance under Semi-Arid Conditions," Sustainability, MDPI, vol. 14(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AL-Kayssi, A.W. & Mustafa, S.H., 2016. "Modeling gypsifereous soil infiltration rate under different sprinkler application rates and successive irrigation events," Agricultural Water Management, Elsevier, vol. 163(C), pages 66-74.
    2. Hui, Xin & Zhao, He & Zhang, Haohui & Wang, Wentao & Wang, Jingjing & Yan, Haijun, 2023. "Specific power or droplet shear stress: Which is the primary cause of soil erosion under low-pressure sprinklers?," Agricultural Water Management, Elsevier, vol. 286(C).
    3. Isabel Kaufmann Almeida & Aleska Kaufmann Almeida & Jorge Luiz Steffen & Teodorico Alves Sobrinho, 2016. "Model for Estimating the Time of Concentration in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4083-4096, September.
    4. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    6. Attila Vad & András Szabó & Oqba Basal & Szilvia Veres, . "Yield of sweet corn and sunflower as affected by different cultivation methods and fertilisation schemes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 0.
    7. Shangyi Lou & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenzheng Liu & Peng Liu & Zhenguo Zhang & Hui Li, 2021. "Current Knowledge and Future Directions for Improving Subsoiling Quality and Reducing Energy Consumption in Conservation Fields," Agriculture, MDPI, vol. 11(7), pages 1-17, June.
    8. Liu, Zihan & Cai, Lu & Dong, Qinge & Zhao, Xiaoli & Han, Jianqiao, 2022. "Effects of microplastics on water infiltration in agricultural soil on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Fatma Baraket & Manuel González-Rosado & Nadhem Brahim & Núria Roca & Hadda Ben Mbarek & Marcin Świtoniak & Rayda Chaker & Ángel Sánchez-Bellón & Hafedh Rigane & Kamel Gargouri & Luis Parras-Alcántara, 2021. "Short and Long-Term Effect of Land Use and Management on Soil Organic Carbon Stock in Semi-Desert Areas of North Africa-Tunisia," Agriculture, MDPI, vol. 11(12), pages 1-15, December.
    10. Silva, Luis Leopoldo, 2007. "Fitting infiltration equations to centre-pivot irrigation data in a Mediterranean soil," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 83-92, December.
    11. Saadat, Saeed & Homaee, Mehdi, 2015. "Modeling sorghum response to irrigation water salinity at early growth stage," Agricultural Water Management, Elsevier, vol. 152(C), pages 119-124.
    12. Rong Zhang & Celso Santos & Madalena Moreira & Paula Freire & João Corte-Real, 2013. "Automatic Calibration of the SHETRAN Hydrological Modelling System Using MSCE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4053-4068, September.
    13. Sadeghi, S.-H. & Peters, T. & Shafii, B. & Amini, M.Z. & Stöckle, C., 2017. "Continuous variation of wind drift and evaporation losses under a linear move irrigation system," Agricultural Water Management, Elsevier, vol. 182(C), pages 39-54.
    14. George Mitri & Georgy Nasrallah & Manal Nader, 2021. "Spatial distribution and landscape impact analysis of quarries and waste dumpsites," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12302-12325, August.
    15. Godwin Iloabuchi Nebo & Alen Manyevere & Tesfay Araya & Johan van Tol, 2020. "Short-Term Impact of Conservation Agriculture on Soil Strength and Saturated Hydraulic Conductivity in the South African Semiarid Areas," Agriculture, MDPI, vol. 10(9), pages 1-12, September.
    16. Chunfeng Jia & Baoping Sun & Xinxiao Yu & Xiaohui Yang, 2020. "Analysis of Runoff and Sediment Losses from a Sloped Roadbed under Variable Rainfall Intensities and Vegetation Conditions," Sustainability, MDPI, vol. 12(5), pages 1-11, March.
    17. Tabasum Rasool & A. Q. Dar & M. A. Wani, 2021. "Development of a Predictive Equation for Modelling the Infiltration Process Using Gene Expression Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1871-1888, April.
    18. Hui, Xin & Lin, Xueji & Zhao, Yue & Xue, Mengyun & Zhuo, Yue & Guo, Hui & Xu, Yuncheng & Yan, Haijun, 2022. "Assessing water distribution characteristics of a variable-rate irrigation system," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Jenkins, M.B. & Truman, C.C. & Franklin, D.H. & Potter, T.L. & Bosch, D.D. & Strickland, T.C. & Nuti, R.C., 2014. "Fecal bacterial losses in runoff from conventional and no-till pearl millet fertilized with broiler litter," Agricultural Water Management, Elsevier, vol. 134(C), pages 38-41.
    20. Chen, Rui & Li, Hong & Wang, Jian & Song, Zhuoyang, 2023. "Critical factors influencing soil runoff and erosion in sprinkler irrigation: Water application rate and droplet kinetic energy," Agricultural Water Management, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3155-:d:516264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.