IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1882-d496497.html
   My bibliography  Save this article

Flexibility Transformation Decision-Making Evaluation of Coal-Fired Thermal Power Units Deep Peak Shaving in China

Author

Listed:
  • Jianjun Wang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Jikun Huo

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Shuo Zhang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Yun Teng

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Li Li

    (School of Economics and Management, Beijing Information Science & Technology University, Haidian district, Beijing 100192, China)

  • Taoya Han

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

According to China’s economic green ecological sustainability development requirement, the energy reform of China is mainly increasing the proportion of renewable energy, and reducing the proportion of fossil energy. It will continue to force China’s thermal power units, especially coal-fired thermal power units, to carry out the flexibility transformation and upgrading of deep peak shaving ability. Due to the different characteristics of coal-fired thermal power units, it is necessary to make flexible transformation decisions by a scientific and reasonable decision-making evaluation method, so as to provide references for the one machine-one policy flexibility transformation of thermal power units. In this paper, a decision-making evaluation index system for the flexibility transformation of coal-fired thermal power units under the demand of deep peak shaving is established. The index system considers the impact of deep peak shaving on the boilers, steam turbines, and auxiliary equipment of coal-fired thermal power units, as well as the effects of the peak shaving. A hybrid evaluation method combined set-valued iteration and GRA-TOPSIS is employed to obtain the weight of the indexes. Finally, an empirical research was conducted based on the index system and the hybrid evaluation method and targeted “one machine, one policy” recommendations were put forward for the flexibility transformation of the coal-fired thermal power units.

Suggested Citation

  • Jianjun Wang & Jikun Huo & Shuo Zhang & Yun Teng & Li Li & Taoya Han, 2021. "Flexibility Transformation Decision-Making Evaluation of Coal-Fired Thermal Power Units Deep Peak Shaving in China," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1882-:d:496497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garbrecht, Oliver & Bieber, Malte & Kneer, Reinhold, 2017. "Increasing fossil power plant flexibility by integrating molten-salt thermal storage," Energy, Elsevier, vol. 118(C), pages 876-883.
    2. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    3. Ye, Liang-Cheng & Lin, Hai Xiang & Tukker, Arnold, 2019. "Future scenarios of variable renewable energies and flexibility requirements for thermal power plants in China," Energy, Elsevier, vol. 167(C), pages 708-714.
    4. Kubik, M.L. & Coker, P.J. & Barlow, J.F., 2015. "Increasing thermal plant flexibility in a high renewables power system," Applied Energy, Elsevier, vol. 154(C), pages 102-111.
    5. B. Kirubakaran & M. Ilangkumaran, 2016. "Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS," Annals of Operations Research, Springer, vol. 245(1), pages 285-313, October.
    6. Gu, Yujiong & Xu, Jing & Chen, Dongchao & Wang, Zhong & Li, Qianqian, 2016. "Overall review of peak shaving for coal-fired power units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 723-731.
    7. Jiaomin Liu & Tong Guo & Yue Wang & Yonggang Li & Shanshan Xu, 2020. "Multi-Technical Flexibility Retrofit Planning of Thermal Power Units Considering High Penetration Variable Renewable Energy: The Case of China," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    8. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    9. Tong Guo & Yajing Gao & Xiaojie Zhou & Yonggang Li & Jiaomin Liu, 2018. "Optimal Scheduling of Power System Incorporating the Flexibility of Thermal Units," Energies, MDPI, vol. 11(9), pages 1-17, August.
    10. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
    11. Richter, Marcel & Oeljeklaus, Gerd & Görner, Klaus, 2019. "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," Applied Energy, Elsevier, vol. 236(C), pages 607-621.
    12. Yanjuan Hu & Lizhe Wu & Chao Shi & Yilin Wang & Feifan Zhu, 2020. "Research on optimal decision-making of cloud manufacturing service provider based on grey correlation analysis and TOPSIS," International Journal of Production Research, Taylor & Francis Journals, vol. 58(3), pages 748-757, February.
    13. Turan Arslan, 2017. "A Weighted Euclidean Distance based TOPSIS Method for Modeling Public Subjective Judgments," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(03), pages 1-18, June.
    14. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    2. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
    3. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    5. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    6. Chunning Na & Huan Pan & Yuhong Zhu & Jiahai Yuan & Lixia Ding & Jungang Yu, 2019. "The Flexible Operation of Coal Power and Its Renewable Integration Potential in China," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    7. Ehsan Khorsandnejad & Robert Malzahn & Ann-Katrin Oldenburg & Annedore Mittreiter & Christian Doetsch, 2023. "Analysis of Flexibility Potential of a Cold Warehouse with Different Refrigeration Compressors," Energies, MDPI, vol. 17(1), pages 1, December.
    8. Qingbin Yu & Yuliang Dong & Yanjun Du & Jiahai Yuan & Fang Fang, 2022. "Optimizing Operation Strategy in a Simulated High-Proportion Wind Power Wind–Coal Combined Base Load Power Generation System under Multiple Scenes," Energies, MDPI, vol. 15(21), pages 1-21, October.
    9. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
    10. Çam, Eren, 2020. "Optimal Dispatch of a Coal-Fired Power Plant with Integrated Thermal Energy Storage," EWI Working Papers 2020-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    11. Yan Zhang & Quan Lyu & Yang Li & Na Zhang & Lijun Zheng & Haoyan Gong & Hui Sun, 2020. "Research on Down-Regulation Cost of Flexible Combined Heat Power Plants Participating in Real-Time Deep Down-Regulation Market," Energies, MDPI, vol. 13(4), pages 1-17, February.
    12. Ting Zhang & Shuaishuai Cao & Lingying Pan & Chenyu Zhou, 2020. "A Policy Effect Analysis of China’s Energy Storage Development Based on a Multi-Agent Evolutionary Game Model," Energies, MDPI, vol. 13(23), pages 1-35, November.
    13. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    14. Hong, Feng & Wang, Rui & Song, Jie & Gao, Mingming & Liu, Jizhen & Long, Dongteng, 2022. "A performance evaluation framework for deep peak shaving of the CFB boiler unit based on the DBN-LSSVM algorithm," Energy, Elsevier, vol. 238(PA).
    15. Lechl, Michael & Fürmann, Tim & de Meer, Hermann & Weidlich, Anke, 2023. "A review of models for energy system flexibility requirements and potentials using the new FLEXBLOX taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    18. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2019. "A multi-objective framework for long-term generation expansion planning with variable renewables," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Yin, Guangzhi & Duan, Maosheng, 2022. "Pricing the deep peak regulation service of coal-fired power plants to promote renewable energy integration," Applied Energy, Elsevier, vol. 321(C).
    20. Oree, Vishwamitra & Sayed Hassen, Sayed Z., 2016. "A composite metric for assessing flexibility available in conventional generators of power systems," Applied Energy, Elsevier, vol. 177(C), pages 683-691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1882-:d:496497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.