IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p789-d480711.html
   My bibliography  Save this article

Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments

Author

Listed:
  • Tugrul Yakupoglu

    (Department of Soil Science & Plant Nutrition, Faculty of Agriculture, Yozgat Bozok University, Yozgat 66900, Turkey)

  • Recep Gundogan

    (Department of Soil Science & Plant Nutrition, Faculty of Agriculture, Harran University, Sanliurfa 63290, Turkey)

  • Turgay Dindaroglu

    (Department of Forest Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey)

  • Kadir Kusvuran

    (Alata Horticultural Research Institute, Ministry of Agriculture and Forestry, Mersin 33740, Turkey)

  • Veysel Gokmen

    (Department of Soil Science & Plant Nutrition, Faculty of Agriculture, Harran University, Sanliurfa 63290, Turkey)

  • Jesus Rodrigo-Comino

    (Department of Physical Geography, University of Trier, 54296 Trier, Germany
    Soil Erosion and Degradation Research Group, Department of Geography, Valencia University, Blasco Ibàñez 28, 46010 Valencia, Spain)

  • Yeboah Gyasi-Agyei

    (School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia)

  • Artemi Cerdà

    (Soil Erosion and Degradation Research Group, Department of Geography, Valencia University, Blasco Ibàñez 28, 46010 Valencia, Spain)

Abstract

The main aim of this research was to determine the potential effects of different tillage systems (TT: traditional tillage and RT: reduced tillage) on runoff and erosion at two different locations (Kahramanmaras and Tarsus, Southern Turkey) under (i) fallow, (ii) wheat ( Triticumaestivum L.), and (iii) sainfoin ( Onobrychissativa L.) crops. Rainfall simulations with intensity of 120 mm h −1 and 30-min duration, representing a typical extreme thunderstorm in this area, were used. We quantified the elapsed time to runoff generation (ET), total runoff volume (R), soil loss (SL), sediment concentration (SC), and runoff coefficient (RC). At both locations, the fallow plots indicated the first runoff response ranging between 1.2 and 3.1 min, while the range was between 9.4 and 8.9 min for the sainfoin plots. The highest runoff coefficient was recorded for the fallow parcel in Tarsus (57.7%), and the lowest runoff coefficient was recorded for the sainfoin parcel in Kahramanmaras (4%). For both study sites, the fallow plots showed higher soil erosion rates (871 and 29.21 g m −2 ) compared with the wheat plots (307 and 11.25 g m −2 ), while sainfoin recorded the lowest soil losses (93.68 and 3.45 g m −2 ), for Tarsus and Kahramanmaras, respectively. Runoff and sediment yield generated from sainfoin and wheat parcels under the RT system were less than under the TT system at the Kahramanmaras location. At the Tarsus location, the effect of soil tillage on soil and water losses was insignificant on the sainfoin planted plots. The reduced tillage system was successful in reducing sediment yield and runoff generated from parcels growing wheat and sainfoin compared to traditional tillage in Tarsus location, but runoff and soil loss were found to be very high compared to parcels constructed in the Kahramanmaras location.

Suggested Citation

  • Tugrul Yakupoglu & Recep Gundogan & Turgay Dindaroglu & Kadir Kusvuran & Veysel Gokmen & Jesus Rodrigo-Comino & Yeboah Gyasi-Agyei & Artemi Cerdà, 2021. "Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:789-:d:480711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galati, Antonino & Crescimanno, Maria & Gristina, Luciano & Keesstra, Saskia & Novara, Agata, 2016. "Actual provision as an alternative criterion to improve the efficiency of payments for ecosystem services for C sequestration in semiarid vineyards," Agricultural Systems, Elsevier, vol. 144(C), pages 58-64.
    2. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    3. Saskia Visser & Saskia Keesstra & Gilbert Maas & Margot de Cleen & Co Molenaar, 2019. "Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felicia Cheţan & Teodor Rusu & Roxana Elena Călugăr & Cornel Chețan & Alina Şimon & Adrian Ceclan & Marius Bărdaș & Olimpia Smaranda Mintaș, 2022. "Research on the Interdependence Linkages between Soil Tillage Systems and Climate Factors on Maize Crop," Land, MDPI, vol. 11(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Shiva & Zeinalzadeh, Kamran & Kheirfam, Hossein & Habibzadeh Azar, Behnam, 2022. "The impact of cyanobacteria inoculation on soil hydraulic properties at the lab-scale experiment," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Lucio Di Matteo & Alessandro Spigarelli & Sofia Ortenzi, 2020. "Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    3. Saskia Keesstra & Jeroen Veraart & Jan Verhagen & Saskia Visser & Marit Kragt & Vincent Linderhof & Wilfred Appelman & Jolanda van den Berg & Ayodeji Deolu-Ajayi & Annemarie Groot, 2023. "Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    4. Shahab S. Band & Saeid Janizadeh & Sunil Saha & Kaustuv Mukherjee & Saeid Khosrobeigi Bozchaloei & Artemi Cerdà & Manouchehr Shokri & Amirhosein Mosavi, 2020. "Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data," Land, MDPI, vol. 9(10), pages 1-23, September.
    5. Wang, Huabing & Xie, Tianyun & Yu, Xiaohong & Zhang, Chi, 2021. "Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau," Agricultural Water Management, Elsevier, vol. 244(C).
    6. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.
    7. Haytham M. Salem & Adil A. Meselhy, 2021. "A portable rainfall simulator to evaluate the factors affecting soil erosion in the northwestern coastal zone of Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2937-2955, February.
    8. Yang Yu & Jesús Rodrigo-Comino, 2021. "Analyzing Regional Geographic Challenges: The Resilience of Chinese Vineyards to Land Degradation Using a Societal and Biophysical Approach," Land, MDPI, vol. 10(2), pages 1-15, February.
    9. Juan An & Jibiao Geng & Huiling Yang & Hongli Song & Bin Wang, 2021. "Effect of Ridge Height, Row Grade, and Field Slope on Nutrient Losses in Runoff in Contour Ridge Systems under Seepage with Rainfall Condition," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    10. Saskia Keesstra & Tamara Metze & Linda Ofori & Marleen Buizer & Saskia Visser, 2022. "What Does the Circular Household of the Future Look Like? An Expert-Based Exploration," Land, MDPI, vol. 11(7), pages 1-15, July.
    11. Yun Xue & Bin Zou & Yimin Wen & Yulong Tu & Liwei Xiong, 2020. "Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra," Sustainability, MDPI, vol. 12(11), pages 1-16, May.
    12. Jan Diek van Mansvelt & Paul C. Struik & Arie Bos & Willem Daub & Diederick Sprangers & Mara van den Berg & Marieke Vingerhoets & Kees Zoeteman, 2021. "Changing Ground: Handling Tensions between Production Ethics and Environmental Ethics of Agricultural Soils," Sustainability, MDPI, vol. 13(23), pages 1-17, December.
    13. Artemi Cerdà & Jesús Rodrigo-Comino, 2021. "Regional Farmers’ Perception and Societal Issues in Vineyards Affected by High Erosion Rates," Land, MDPI, vol. 10(2), pages 1-18, February.
    14. Tadros, Maher J. & Al-Mefleh, Naji K. & Othman, Yahia A. & Al-Assaf, Amani, 2021. "Water harvesting techniques for improving soil water content, and morpho-physiology of pistachio trees under rainfed conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Sheikh Adil Edrisi & Vishal Tripathi & Purushothaman Chirakkuzhyil Abhilash, 2019. "Performance Analysis and Soil Quality Indexing for Dalbergia sissoo Roxb. Grown in Marginal and Degraded Land of Eastern Uttar Pradesh, India," Land, MDPI, vol. 8(4), pages 1-19, April.
    16. Melánia Feszterová & Lýdia Porubcová & Anna Tirpáková, 2021. "The Monitoring of Selected Heavy Metals Content and Bioavailability in the Soil-Plant System and Its Impact on Sustainability in Agribusiness Food Chains," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    17. Ilaria Zambon & Artemi Cerdà & Sirio Cividino & Luca Salvati, 2019. "The (Evolving) Vineyard’s Age Structure in the Valencian Community, Spain: A New Demographic Approach for Rural Development and Landscape Analysis," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    18. Ilaria Zambon & Artemi Cerdà & Filippo Gambella & Gianluca Egidi & Luca Salvati, 2019. "Industrial Sprawl and Residential Housing: Exploring the Interplay between Local Development and Land-Use Change in the Valencian Community, Spain," Land, MDPI, vol. 8(10), pages 1-18, September.
    19. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    20. Saskia Keesstra & Saskia Visser & Margot De Cleen, 2021. "Achieving Land Degradation Neutrality: A Robust Soil System Forms the Basis for Nature-Based Solutions," Land, MDPI, vol. 10(12), pages 1-4, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:789-:d:480711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.