IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p535-d476692.html
   My bibliography  Save this article

An Experimental Study on the Melting Solidification of Municipal Solid Waste Incineration Fly Ash

Author

Listed:
  • Jing Gao

    (National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Tao Wang

    (Solid Waste Project Department, Beijing Aerospace Petrochemical Technology EC and EP Corporation Limited, Beijing 100010, China)

  • Jie Zhao

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Xiaoying Hu

    (National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Changqing Dong

    (National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China
    State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

Abstract

Melting solidification experiments of municipal solid waste incineration (MSWI) fly ash were carried out in a high-temperature tube furnace device. An ash fusion temperature (AFT) test, atomic absorption spectroscopy (AAS), scanning electron microscope (SEM), and X-ray diffraction (XRD) were applied in order to gain insight into the ash fusibility, the transformation during the melting process, and the leaching behavior of heavy metals in slag. The results showed that oxide minerals transformed into gehlenite as temperature increased. When the temperature increased to 1300 °C, 89 °C higher than the flow temperature (FT), all of the crystals transformed into molten slag. When the heating temperatures were higher than the FT, the volatilization of the Pb, Cd, Zn, and Cu decreased, which may have been influenced by the formation of liquid slag. In addition, the formation of liquid slag at a high temperature also improved the stability of heavy metals in heated slag.

Suggested Citation

  • Jing Gao & Tao Wang & Jie Zhao & Xiaoying Hu & Changqing Dong, 2021. "An Experimental Study on the Melting Solidification of Municipal Solid Waste Incineration Fly Ash," Sustainability, MDPI, vol. 13(2), pages 1-10, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:535-:d:476692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen-Piao Yen & Song-Yan Zhou & Yun-Hwei Shen, 2020. "The Recovery of Ca and Zn from the Municipal Solid Waste Incinerator Fly Ash," Sustainability, MDPI, vol. 12(21), pages 1-11, October.
    2. Charles H. K. Lam & Alvin W. M. Ip & John Patrick Barford & Gordon McKay, 2010. "Use of Incineration MSW Ash: A Review," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Sheng Chen & Gregory Chen & Cheng-Han Lee, 2023. "Effects of Basicity Index on Incinerator Fly Ash Melting Process and Stabilization," Sustainability, MDPI, vol. 15(15), pages 1-12, July.
    2. Tomasz Kalak & Ryszard Cierpiszewski & Małgorzata Ulewicz, 2021. "High Efficiency of the Removal Process of Pb(II) and Cu(II) Ions with the Use of Fly Ash from Incineration of Sunflower and Wood Waste Using the CFBC Technology," Energies, MDPI, vol. 14(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian-Zhi Wang & Hsiao-Han Lin & Yi-Chin Tang & Yun-Hwei Shen, 2023. "Recovery of Calcium from Reaction Fly Ash," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
    2. Magdalena Bogacka & Nikolina Poranek & Beata Łaźniewska-Piekarczyk & Krzysztof Pikoń, 2020. "Removal of Pollutants from Secondary Waste from an Incineration Plant: The Review of Methods," Energies, MDPI, vol. 13(23), pages 1-17, November.
    3. Peng Xu & Qingliang Zhao & Wei Qiu & Yan Xue & Na Li, 2019. "Microstructure and Strength of Alkali-Activated Bricks Containing Municipal Solid Waste Incineration (MSWI) Fly Ash Developed as Construction Materials," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    4. Maria Bostenaru Dan & Magdalena Maria Bostenaru-Dan, 2021. "Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    5. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Estefani Rondón Toro & Ana López Martínez & Amaya Lobo García de Cortázar, 2023. "Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile," Sustainability, MDPI, vol. 15(9), pages 1-18, May.
    7. Mingtao Jiang & Adrian C. H. Lai & Adrian Wing-Keung Law, 2020. "Solid Waste Incineration Modelling for Advanced Moving Grate Incinerators," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    8. Davinder Singh & Arvind Kumar, 2020. "Factors affecting properties of MSWI bottom ash employing cement and fiber for geotechnical applications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6891-6905, October.
    9. Shazim Ali Memon & Israr Wahid & Muhammad Khizar Khan & Muhammad Ashraf Tanoli & Madina Bimaganbetova, 2018. "Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    10. Monika Czop & Beata Łaźniewska-Piekarczyk, 2019. "Evaluation of the Leachability of Contaminations of Fly Ash and Bottom Ash from the Combustion of Solid Municipal Waste before and after Stabilization Process," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    11. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    12. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    13. Dou, Xiaomin & Ren, Fei & Nguyen, Minh Quan & Ahamed, Ashiq & Yin, Ke & Chan, Wei Ping & Chang, Victor Wei-Chung, 2017. "Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 24-38.
    14. Rawashdeh, Rami Al & Xavier-Oliveira, Emanuel & Maxwell, Philip, 2016. "The potash market and its future prospects," Resources Policy, Elsevier, vol. 47(C), pages 154-163.
    15. S. Joseph Antony & George Okeke & D. Deniz G. Tokgoz & N. Gozde Ozerkan, 2021. "Whole-Field Stress Sensing and Multiscale Mechanics for Developing Cement-Based Composites Containing Recycled Municipal Granular Wastes," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    16. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    17. Dezhi Zou & Xiaona Wang & Chuanfu Wu & Teng Li & Menglu Wang & Shu Liu & Qunhui Wang & Takayuki Shimaoka, 2020. "Dechlorination of Municipal Solid Waste Incineration Fly Ash by Leaching with Fermentation Liquid of Food Waste," Sustainability, MDPI, vol. 12(11), pages 1-11, May.
    18. Po-Wen Chen & Zhen-Shu Liu & Min-Jie Wun & Tai-Chen Kuo, 2016. "Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration," IJERPH, MDPI, vol. 13(11), pages 1-10, November.
    19. Ramachandran, Srikkanth & Yao, Zhiyi & You, Siming & Massier, Tobias & Stimming, Ulrich & Wang, Chi-Hwa, 2017. "Life cycle assessment of a sewage sludge and woody biomass co-gasification system," Energy, Elsevier, vol. 137(C), pages 369-376.
    20. Muyiwa Lawrence Adedara & Ridwan Taiwo & Hans-Rudolf Bork, 2023. "Municipal Solid Waste Collection and Coverage Rates in Sub-Saharan African Countries: A Comprehensive Systematic Review and Meta-Analysis," Waste, MDPI, vol. 1(2), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:535-:d:476692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.