IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6322-d453884.html
   My bibliography  Save this article

Removal of Pollutants from Secondary Waste from an Incineration Plant: The Review of Methods

Author

Listed:
  • Magdalena Bogacka

    (Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

  • Nikolina Poranek

    (Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

  • Beata Łaźniewska-Piekarczyk

    (Department of Building Engineering and Building Physics, Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland)

  • Krzysztof Pikoń

    (Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

Abstract

In order to use secondary waste from an incineration plant, it is necessary to process or treat it. Valorization of municipal solid waste incineration bottom ash (MSWIBA) is a popular treatment method. Moreover, there are other possibilities, such as alkaline pre-treatment, which can be used for the rest of the secondary waste from incineration plants, especially hazardous fly ash. The purpose of this study is to show the problem of secondary waste in Poland in relation to the rest of Europe. Due to the physicochemical research of secondary waste, the possibilities of the procedure and its management are indicated. By analyzing the literature and the market, the latest possibilities for improving the physicochemical properties of secondary waste are proposed. Searching for new methods for waste management is essential to the environment. This manuscript presents the problem of the increasing amount of waste, as well as possibilities to close the loop, and minimize the negative impact on the environment. Additionally, the article shows that environmental benefits can be achieved by replacing raw material with secondary waste.

Suggested Citation

  • Magdalena Bogacka & Nikolina Poranek & Beata Łaźniewska-Piekarczyk & Krzysztof Pikoń, 2020. "Removal of Pollutants from Secondary Waste from an Incineration Plant: The Review of Methods," Energies, MDPI, vol. 13(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6322-:d:453884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Rolewicz-Kalińska & Krystyna Lelicińska-Serafin & Piotr Manczarski, 2020. "The Circular Economy and Organic Fraction of Municipal Solid Waste Recycling Strategies," Energies, MDPI, vol. 13(17), pages 1-20, August.
    2. Charles H. K. Lam & Alvin W. M. Ip & John Patrick Barford & Gordon McKay, 2010. "Use of Incineration MSW Ash: A Review," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    3. Ola Eriksson, 2017. "Energy and Waste Management," Energies, MDPI, vol. 10(7), pages 1-7, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long Zhang & Wuliyasu Bai & Jingzheng Ren, 2023. "Waste-to-Energy: A Midas Touch for Turning Waste into Energy," Energies, MDPI, vol. 16(5), pages 1-5, February.
    2. Nikolina Poranek & Beata Łaźniewska-Piekarczyk & Adrian Czajkowski & Krzysztof Pikoń, 2021. "Circular Economy for Municipal Solid Waste Incineration Bottom Ash (MSWIBA) Management in Mortars with CSA and CEM I, MSWIBA Glassy Phase, and DTG," Energies, MDPI, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venkata Ravi Sankar Cheela & Michele John & Wahidul K. Biswas & Brajesh Dubey, 2021. "Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment," Energies, MDPI, vol. 14(11), pages 1-23, May.
    2. Pauline Bergström & Christopher Malefors & Ingrid Strid & Ole Jørgen Hanssen & Mattias Eriksson, 2020. "Sustainability Assessment of Food Redistribution Initiatives in Sweden," Resources, MDPI, vol. 9(3), pages 1-27, March.
    3. Peng Xu & Qingliang Zhao & Wei Qiu & Yan Xue & Na Li, 2019. "Microstructure and Strength of Alkali-Activated Bricks Containing Municipal Solid Waste Incineration (MSWI) Fly Ash Developed as Construction Materials," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    4. Krystyna Lelicińska-Serafin & Piotr Manczarski & Anna Rolewicz-Kalińska, 2023. "An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy," Energies, MDPI, vol. 16(4), pages 1-13, February.
    5. Grażyna Kędzia & Barbara Ocicka & Aneta Pluta-Zaremba & Marta Raźniewska & Jolanta Turek & Beata Wieteska-Rosiak, 2022. "Social Innovations for Improving Compostable Packaging Waste Management in CE: A Multi-Solution Perspective," Energies, MDPI, vol. 15(23), pages 1-19, December.
    6. Emilia den Boer & Kamil Banaszkiewicz & Jan den Boer & Iwona Pasiecznik, 2022. "Energy Recovery from Waste—Closing the Municipal Loop," Energies, MDPI, vol. 15(3), pages 1-20, February.
    7. Maria Bostenaru Dan & Magdalena Maria Bostenaru-Dan, 2021. "Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    8. Przemysław Seruga & Małgorzata Krzywonos & Emilia den Boer & Łukasz Niedźwiecki & Agnieszka Urbanowska & Halina Pawlak-Kruczek, 2022. "Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.
    9. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    10. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Eriksson, Mattias & Ghosh, Ranjan & Mattsson, Lisa & Ismatov, Alisher, 2017. "Take-back agreements in the perspective of food waste generation at the supplier-retailer interface," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 83-93.
    12. Giovanni Mondello & Roberta Salomone & Giuseppe Ioppolo & Giuseppe Saija & Sergio Sparacia & Maria Claudia Lucchetti, 2017. "Comparative LCA of Alternative Scenarios for Waste Treatment: The Case of Food Waste Production by the Mass-Retail Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    13. Estefani Rondón Toro & Ana López Martínez & Amaya Lobo García de Cortázar, 2023. "Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile," Sustainability, MDPI, vol. 15(9), pages 1-18, May.
    14. Przemysław Seruga, 2021. "The Municipal Solid Waste Management System with Anaerobic Digestion," Energies, MDPI, vol. 14(8), pages 1-9, April.
    15. Jara Laso & Isabel García-Herrero & María Margallo & Alba Bala & Pere Fullana-i-Palmer & Angel Irabien & Rubén Aldaco, 2019. "LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain," Energies, MDPI, vol. 12(7), pages 1-18, April.
    16. Phemelo Tamasiga & Taghi Miri & Helen Onyeaka & Abarasi Hart, 2022. "Food Waste and Circular Economy: Challenges and Opportunities," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    17. Józef Ciuła & Violetta Kozik & Agnieszka Generowicz & Krzysztof Gaska & Andrzej Bak & Marlena Paździor & Krzysztof Barbusiński, 2020. "Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis," Energies, MDPI, vol. 13(23), pages 1-18, November.
    18. Long Zhang & Wuliyasu Bai & Jingzheng Ren, 2023. "Waste-to-Energy: A Midas Touch for Turning Waste into Energy," Energies, MDPI, vol. 16(5), pages 1-5, February.
    19. Sławomir Kasiński & Marcin Dębowski & Maria Olkowska & Marcin Rudnicki, 2021. "Analysis of the Long-Term Mass Balance and Efficiency of Waste Recovery in a Municipal Waste Biodrying Plant," Energies, MDPI, vol. 14(22), pages 1-17, November.
    20. Mingtao Jiang & Adrian C. H. Lai & Adrian Wing-Keung Law, 2020. "Solid Waste Incineration Modelling for Advanced Moving Grate Incinerators," Sustainability, MDPI, vol. 12(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6322-:d:453884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.