IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1755-d521796.html
   My bibliography  Save this article

Tribo-Electrostatic Separation Analysis of a Beneficial Solution in the Recycling of Mixed Poly(Ethylene Terephthalate) and High-Density Polyethylene

Author

Listed:
  • Wieslaw Lyskawinski

    (Faculty of Control, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznan, Poland)

  • Mariusz Baranski

    (Faculty of Control, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznan, Poland)

  • Cezary Jedryczka

    (Faculty of Control, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznan, Poland)

  • Jacek Mikolajewicz

    (Faculty of Control, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznan, Poland)

  • Roman Regulski

    (Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland)

  • Dariusz Sedziak

    (Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland)

  • Krzysztof Netter

    (Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland)

  • Dominik Rybarczyk

    (Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland)

  • Dorota Czarnecka-Komorowska

    (Faculty of Mechanical Engineering, Institute of Materials Technology, Poznan University of Technology, 60-965 Poznan, Poland)

  • Mateusz Barczewski

    (Faculty of Mechanical Engineering, Institute of Materials Technology, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

The aim of this study was to investigate and analyze the impact of selected parameters during the tribocharging process of shredded poly(ethylene terephthalate) (PET) and high-density polyethylene (PE-HD) plastics on accumulated electric charge and electrostatic separation effectiveness. The accumulation of electric charge on surfaces of polymer particles as a result of their circular motion forced by the airflow cyclone container was investigated. The impact of the container material, time of tribocharging and the airflow intensity were experimentally examined. A container in which the particles of the considered polymers are electrified with opposite charges was selected. A high ability to accumulate surface charge on small particles of both polymers was demonstrated. The electrified mixed PET/PE-HD was subjected to a separation process. An electrostatic separator designed and constructed by the authors was used for to the separation. In turn, to assess the effectiveness of this separation, a dedicated vision system was used. Based on the result of the carried out tests, it has been assumed that the proposed approach’s effectiveness has been demonstrated by means of empirical validation.

Suggested Citation

  • Wieslaw Lyskawinski & Mariusz Baranski & Cezary Jedryczka & Jacek Mikolajewicz & Roman Regulski & Dariusz Sedziak & Krzysztof Netter & Dominik Rybarczyk & Dorota Czarnecka-Komorowska & Mateusz Barczew, 2021. "Tribo-Electrostatic Separation Analysis of a Beneficial Solution in the Recycling of Mixed Poly(Ethylene Terephthalate) and High-Density Polyethylene," Energies, MDPI, vol. 14(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1755-:d:521796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1755/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1755/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sina Herceg & Sebastián Pinto Bautista & Karl-Anders Weiß, 2020. "Influence of Waste Management on the Environmental Footprint of Electricity Produced by Photovoltaic Systems," Energies, MDPI, vol. 13(9), pages 1-15, May.
    2. Andrzej Duda & Arkadiusz Fenicki & Patryk Molski & Elżbieta Szostak & Piotr Duda, 2020. "Design and Operation of a Modern Polish Plant for Plastic Waste Recycling through the Degradative Depolymerization Process. A Case Study," Energies, MDPI, vol. 13(24), pages 1-18, December.
    3. Przemysław Zaleski & Yash Chawla, 2020. "Circular Economy in Poland: Profitability Analysis for Two Methods of Waste Processing in Small Municipalities," Energies, MDPI, vol. 13(19), pages 1-26, October.
    4. Anna Rolewicz-Kalińska & Krystyna Lelicińska-Serafin & Piotr Manczarski, 2020. "The Circular Economy and Organic Fraction of Municipal Solid Waste Recycling Strategies," Energies, MDPI, vol. 13(17), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sławomir Kasiński & Marcin Dębowski & Maria Olkowska & Marcin Rudnicki, 2021. "Analysis of the Long-Term Mass Balance and Efficiency of Waste Recovery in a Municipal Waste Biodrying Plant," Energies, MDPI, vol. 14(22), pages 1-17, November.
    2. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    3. Venkata Ravi Sankar Cheela & Michele John & Wahidul K. Biswas & Brajesh Dubey, 2021. "Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment," Energies, MDPI, vol. 14(11), pages 1-23, May.
    4. Luca Ciacci & Fabrizio Passarini, 2020. "Life Cycle Assessment (LCA) of Environmental and Energy Systems," Energies, MDPI, vol. 13(22), pages 1-8, November.
    5. Dias, Pablo R. & Schmidt, Lucas & Chang, Nathan L. & Monteiro Lunardi, Marina & Deng, Rong & Trigger, Blair & Bonan Gomes, Lucas & Egan, Renate & Veit, Hugo, 2022. "High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Magdalena Bogacka & Nikolina Poranek & Beata Łaźniewska-Piekarczyk & Krzysztof Pikoń, 2020. "Removal of Pollutants from Secondary Waste from an Incineration Plant: The Review of Methods," Energies, MDPI, vol. 13(23), pages 1-17, November.
    7. Krystyna Lelicińska-Serafin & Piotr Manczarski & Anna Rolewicz-Kalińska, 2023. "An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy," Energies, MDPI, vol. 16(4), pages 1-13, February.
    8. Emilia den Boer & Kamil Banaszkiewicz & Jan den Boer & Iwona Pasiecznik, 2022. "Energy Recovery from Waste—Closing the Municipal Loop," Energies, MDPI, vol. 15(3), pages 1-20, February.
    9. Patrycja Wojciechowska & Karolina Wiszumirska, 2022. "Sustainable Communication in the B2C Market—The Impact of Packaging," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    10. Magdalena Bogacka & Martyna Potempa & Bartłomiej Milewicz & Dariusz Lewandowski & Krzysztof Pikoń & Katarzyna Klejnowska & Piotr Sobik & Edyta Misztal, 2020. "PV Waste Thermal Treatment According to the Circular Economy Concept," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    11. Przemysław Seruga & Małgorzata Krzywonos & Emilia den Boer & Łukasz Niedźwiecki & Agnieszka Urbanowska & Halina Pawlak-Kruczek, 2022. "Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.
    12. Camilo-A. Vargas-Terranova & Javier Rodrigo-Ilarri & María-Elena Rodrigo-Clavero & Miguel-A. Rozo-Arango, 2022. "M-GRCT: A Dynamic Circular Economy Model for the Optimal Design of Waste Management Systems in Low-Income Municipalities," IJERPH, MDPI, vol. 19(5), pages 1-25, February.
    13. Przemysław Rajca & Andrzej Skibiński & Anna Biniek-Poskart & Monika Zajemska, 2022. "Review of Selected Determinants Affecting Use of Municipal Waste for Energy Purposes," Energies, MDPI, vol. 15(23), pages 1-17, November.
    14. Przemysław Seruga, 2021. "The Municipal Solid Waste Management System with Anaerobic Digestion," Energies, MDPI, vol. 14(8), pages 1-9, April.
    15. Omar H. AL-Zoubi & Moayyad Shawaqfah & Fares Almomani & Rebhi A. Damash & Kamel Al-Zboon, 2022. "Photovoltaic Solar Cells and Panels Waste in Jordan: Figures, Facts, and Concerns," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    16. Phemelo Tamasiga & Taghi Miri & Helen Onyeaka & Abarasi Hart, 2022. "Food Waste and Circular Economy: Challenges and Opportunities," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    17. Marcin Olkiewicz & Anna Olkiewicz & Radosław Wolniak & Adam Wyszomirski, 2021. "Effects of Pro-Ecological Investments on an Example of the Heating Industry—Case Study," Energies, MDPI, vol. 14(18), pages 1-24, September.
    18. Józef Ciuła & Violetta Kozik & Agnieszka Generowicz & Krzysztof Gaska & Andrzej Bak & Marlena Paździor & Krzysztof Barbusiński, 2020. "Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis," Energies, MDPI, vol. 13(23), pages 1-18, November.
    19. YoungSeok Hwang & Jung-Sup Um & JunHwa Hwang & Stephan Schlüter, 2020. "Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO 2 Flux," Energies, MDPI, vol. 13(22), pages 1-20, November.
    20. Marzena Smol & Paulina Marcinek & Eugeniusz Koda, 2021. "Drivers and Barriers for a Circular Economy (CE) Implementation in Poland—A Case Study of Raw Materials Recovery Sector," Energies, MDPI, vol. 14(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1755-:d:521796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.