IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12249-d673385.html
   My bibliography  Save this article

Analysis of Building Archetypes for Optimising New Photovoltaic Energy Facilities: A Case Study

Author

Listed:
  • Jesica Fernández-Agüera

    (Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Samuel Domínguez-Amarillo

    (Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Nerea García-Cortés

    (Department of Architectural Building, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Miguel Ángel Campano

    (Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, 41012 Sevilla, Spain)

Abstract

Fuel poverty rates are high in southern Europe, particularly in social housing, despite the enormous potential for capturing solar power inherent in the roofs of apartment buildings. The in situ generation, distribution and consumption of photovoltaic energy carry obvious advantages including vastly improved efficiency attendant upon the reduction in distribution-related losses and costs, and the energy empowerment afforded lower income communities. The primary drawback is the imbalance between photovoltaic production patterns and users’ actual needs (peak consumption vs. peak generation). That mismatch is difficult to reconcile without resorting to energy storage or net metering, both of which entail grid involvement and greater management complexity. The present study introduces a methodology for analysing residential archetypes to determine the values of the parameters essential to optimising photovoltaic energy production and use. The aim is to determine where excess generation can be shared with other users in the vicinity and optimally pool residential rooftop facilities to meet community-scale energy demand, ultimately enhancing such disadvantaged neighbourhoods’ self-sufficiency. The case study discussed defines archetypes for just such a neighbourhood in Madrid, Spain. The solar energy production potential of the example is promising for its application in large southern European cities, with self-sufficiency rates obtained ranging from 15% to 25% and self-consumption rates from 61% to 80%.

Suggested Citation

  • Jesica Fernández-Agüera & Samuel Domínguez-Amarillo & Nerea García-Cortés & Miguel Ángel Campano, 2021. "Analysis of Building Archetypes for Optimising New Photovoltaic Energy Facilities: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12249-:d:673385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Juan José Sendra & Susan Roaf, 2018. "Rethinking User Behaviour Comfort Patterns in the South of Spain—What Users Really Do," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    2. Ana-María Martínez-Llorens & Paloma Taltavull de La Paz & Raul-Tomas Mora-Garcia, 2020. "Effect of The Physical Characteristics of a Dwelling on Energy Consumption and Emissions: The Case of Castellón And Valencia (Spain)," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    3. Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Miguel Ángel Campano & Ignacio Acosta, 2019. "Effect of Airtightness on Thermal Loads in Legacy Low-Income Housing," Energies, MDPI, vol. 12(9), pages 1-14, May.
    4. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur Nowoświat & Iwona Pokorska-Silva & Mateusz Konewecki, 2021. "Tightness of Single-Family Buildings Made in Prefabricated Wood Frame Technology," Energies, MDPI, vol. 14(15), pages 1-14, July.
    2. Ramallo-González, Alfonso P. & Loonen, Roel & Tomat, Valentina & Zamora, Miguel Ángel & Surugin, Dmitry & Hensen, Jan, 2020. "Nomograms for de-complexing the dimensioning of off-grid PV systems," Renewable Energy, Elsevier, vol. 161(C), pages 162-172.
    3. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    4. Jesica Fernández-Agüera & Samuel Dominguez-Amarillo & Marco Fornaciari & Fabio Orlandi, 2019. "TVOCs and PM 2.5 in Naturally Ventilated Homes: Three Case Studies in a Mild Climate," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    5. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    6. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    7. Oscar Villegas Mier & Anna Dittmann & Wiebke Herzberg & Holger Ruf & Elke Lorenz & Michael Schmidt & Rainer Gasper, 2023. "Predictive Control of a Real Residential Heating System with Short-Term Solar Power Forecast," Energies, MDPI, vol. 16(19), pages 1-19, October.
    8. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    9. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    10. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    11. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    12. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    13. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    14. Schick, Christoph & Hufendiek, Kai, 2023. "Assessment of the regulatory framework in view of effectiveness and distributional effects in the context of small-scale PV—The German experience," Energy Policy, Elsevier, vol. 172(C).
    15. Hirschburger, Rafael & Weidlich, Anke, 2020. "Profitability of photovoltaic and battery systems on municipal buildings," Renewable Energy, Elsevier, vol. 153(C), pages 1163-1173.
    16. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    17. Vasileios Papadopoulos & Jos Knockaert & Chris Develder & Jan Desmet, 2020. "Peak Shaving through Battery Storage for Low-Voltage Enterprises with Peak Demand Pricing," Energies, MDPI, vol. 13(5), pages 1-17, March.
    18. Fett, Daniel & Fraunholz, Christoph & Keles, Dogan, 2021. "Diffusion and system impact of residential battery storage under different regulatory settings," Working Paper Series in Production and Energy 55, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    19. Psimopoulos, Emmanouil & Bee, Elena & Widén, Joakim & Bales, Chris, 2019. "Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system," Applied Energy, Elsevier, vol. 249(C), pages 355-367.
    20. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12249-:d:673385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.