IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11974-d667956.html
   My bibliography  Save this article

Embodied Carbon and Embodied Energy Scenarios in the Built Environment. Computational Design Meets EPDs

Author

Listed:
  • Sara Giaveno

    (Department of Architecture and Design (DAD), Politecnico di Torino, 10100 Torino, Italy)

  • Anna Osello

    (Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, 10100 Torino, Italy)

  • Davide Garufi

    (CRH, 1012 Amsterdam, The Netherlands)

  • Diego Santamaria Razo

    (CRH, 1012 Amsterdam, The Netherlands)

Abstract

This article aims to study the political, environmental and economic factors in contemporary society that influence new approaches and decision making in design in terms of carbon emissions and energy employment. These issues are increasingly influencing political decision making and public policy throughout every aspect of society, including the design practice. Managing this kind of complexity means adopting new forms of collaboration, methodologies and tools, knowledge and technology sharing. The article aims to narrate a PhD research experience grounded in academy–industry collaboration and aimed at creating a digital methodology for impact evaluation and investment planning. In particular, the digital methodology focuses on responding to international public policy for the sustainable growth of cities, in terms of footprint and energy demand, by including a holistic view of the design process made possible by the use of life-cycle assessment (LCA) procedures. To simplify the calculation, the methodology focuses on the Environmental Product Declaration (EPD) data rather than the entire LCA. The EPD is a document that describes the environmental impacts linked to the production of a specific quantity of product or service. The objective was not to create another evaluation method but to employ the EPD results in combination with parametric and computational procedures. The integration of those procedures by using visual programming and scripting allowed the calculation of Embodied Carbon and Embodied Energy and created a user-friendly interface to query the results. The output obtained included automatic and dynamic diagrams able to identify impact scenarios in terms of CO 2 emissions and MJ of embodied energy after the conceptual design stage. The strategic use of the charts lies in their potential to simulate impact conditions and, therefore, in the chance to create sustainable transformation scenarios in the early stages of design. At this point, the influence on choices is at its highest, and the costs are low. Moreover, the methodology represents a platform of collaboration that potentially increases the level of interaction between the actors of the construction process with the consequent improvement in design quality. In conclusion, building the design methodology and testing its performance within a specific sociotechnical context was important in critically evaluating certain topics, for example, the recent European strategies on new technology to reach sustainable objectives, the role of digital tools in proposing solutions towards contemporary social issues, the birth of new forms of partnership and collaboration and the new possibilities coming from digital evaluation approaches.

Suggested Citation

  • Sara Giaveno & Anna Osello & Davide Garufi & Diego Santamaria Razo, 2021. "Embodied Carbon and Embodied Energy Scenarios in the Built Environment. Computational Design Meets EPDs," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11974-:d:667956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Young-su Shin & Kyuman Cho, 2015. "BIM Application to Select Appropriate Design Alternative with Consideration of LCA and LCCA," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, September.
    2. Barnes, Tina & Pashby, Ian & Gibbons, Anne, 2002. "Effective University - Industry Interaction:: A Multi-case Evaluation of Collaborative R&D Projects," European Management Journal, Elsevier, vol. 20(3), pages 272-285, June.
    3. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardette Soust-Verdaguer & José Antonio Gutiérrez Moreno & Carmen Llatas, 2023. "Utilization of an Automatic Tool for Building Material Selection by Integrating Life Cycle Sustainability Assessment in the Early Design Stages in BIM," Sustainability, MDPI, vol. 15(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    2. Dongchen Han & Mohsen Kalantari & Abbas Rajabifard, 2021. "Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    3. Taheri, Mozhdeh & van Geenhuizen, Marina, 2016. "Teams' boundary-spanning capacity at university: Performance of technology projects in commercialization," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 31-43.
    4. Wenqing Wu & Kexin Yu & Saixiang Ma & Chien-Chi Chu & Shijie Li & Chengcheng Ma & Sang-Bing Tsai, 2018. "An Empirical Study on Optimal Strategies of Industry-University-Institute Green Innovation with Subsidy," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    5. Robert Rybnicek & Julia Plakolm & Lisa Baumgartner & Alfred Gutschelhofer, 2017. "The importance of interpersonal and social factors in university?industry collaboration," Proceedings of Business and Management Conferences 5207581, International Institute of Social and Economic Sciences.
    6. Alessandro D’Amico & Giacomo Bergonzoni & Agnese Pini & Edoardo Currà, 2020. "BIM for Healthy Buildings: An Integrated Approach of Architectural Design based on IAQ Prediction," Sustainability, MDPI, vol. 12(24), pages 1-31, December.
    7. Yung-Chi Shen, 2017. "Identifying the key barriers and their interrelationships impeding the university technology transfer in Taiwan: a multi-stakeholder perspective," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2865-2884, November.
    8. Hiroyuki Okamuro & Junichi Nishimura, 2013. "Impact of university intellectual property policy on the performance of university-industry research collaboration," The Journal of Technology Transfer, Springer, vol. 38(3), pages 273-301, June.
    9. Xi Yu & Krishna P. Paudel & Dongmei Li & Xiaolei Xiong & Yanyu Gong, 2020. "Sustainable Collaborative Innovation between Research Institutions and Seed Enterprises in China," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    10. Anita Naneva & Marcella Bonanomi & Alexander Hollberg & Guillaume Habert & Daniel Hall, 2020. "Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    11. Todd Davey & Sue Rossano & Peter Sijde, 2016. "Does context matter in academic entrepreneurship? The role of barriers and drivers in the regional and national context," The Journal of Technology Transfer, Springer, vol. 41(6), pages 1457-1482, December.
    12. Min Ho Shin & Hye Kyung Lee & Hwan Yong Kim, 2018. "Benefit–Cost Analysis of Building Information Modeling (BIM) in a Railway Site," Sustainability, MDPI, vol. 10(11), pages 1-10, November.
    13. Clyde Zhengdao Li & Yiqian Deng & Yingyi Ya & Vivian W. Y. Tam & Chen Lu, 2023. "Applications of Information Technology in Building Carbon Flow," Sustainability, MDPI, vol. 15(23), pages 1-23, December.
    14. Simachev, Yuri & Kuzyk, Mikhail & Feygina, Vera, 2015. "Interaction between Business and Research Organizations in the Sphere of Innovations: The Russian Experience in Promoting Cooperation," Published Papers 431503, Russian Presidential Academy of National Economy and Public Administration.
    15. Min, Jae-Woong & Vonortas, Nicholas S. & Kim, YoungJun, 2019. "Commercialization of transferred public technologies," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 10-20.
    16. Scuotto, Veronica & Beatrice, Orlando & Valentina, Cillo & Nicotra, Melita & Di Gioia, Leonardo & Farina Briamonte, Massimiliano, 2020. "Uncovering the micro-foundations of knowledge sharing in open innovation partnerships: An intention-based perspective of technology transfer," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    17. Noack, Anika, 2022. "Knowledge and Technology Transfer under Digital Conditions: Transfer Intermediaries in Eastern Germany and the Role of Digital Means, Trust and Face-to-Face Interactions," fast track to transfer – Working Paper Series 004, Technical University of Wildau and the Brandenburg Technical University of Cottbus-Senftenberg, Innovation Hub 13 - fast track to transfer.
    18. Vitaliy Roud & Valeriya Vlasova, 2016. "Firm-Level Evidence on the Cooperative Innovation Strategies in Russian Manufacturing," HSE Working papers WP BRP 63/STI/2016, National Research University Higher School of Economics.
    19. Justyna Matysiewicz & Slawomir Smyczek, 2013. "Knowledge Creation In International Scientific Networks On Example Netaware Intensive Programme," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 8(4), pages 107-122, December.
    20. Nelson Duarte & Krzysztof Szczepaniak & Vítor Santos & Cristóvao Sousa & Carla Sofia Gonçalves Pereira, 2017. "Model transferu wiedzy z uczelni wyższych do biznesu," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 44, pages 211-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11974-:d:667956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.