IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2274-d1047250.html
   My bibliography  Save this article

Utilization of an Automatic Tool for Building Material Selection by Integrating Life Cycle Sustainability Assessment in the Early Design Stages in BIM

Author

Listed:
  • Bernardette Soust-Verdaguer

    (Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla. Reina Mercedes Avenue 2, 41012 Seville, Spain)

  • José Antonio Gutiérrez Moreno

    (Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla. Reina Mercedes Avenue 2, 41012 Seville, Spain)

  • Carmen Llatas

    (Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla. Reina Mercedes Avenue 2, 41012 Seville, Spain)

Abstract

Recent international scientific studies have described the current situation regarding CO 2 emissions and have provided evidence of its catastrophic short- and medium-term consequences. The implementation of solutions of a more sustainable nature to reduce and mitigate this situation is becoming increasingly urgent. To this end, the integration of multi-dimension and life cycle assessment into the design process of buildings can help and support decision making. Life Cycle Sustainability Assessment (LCSA) is one of the scientific community’s most widely recognized methodologies for this purpose, combining the evaluation of the social, economic, and social dimensions (Triple Bottom Line). One of the main obstacles to implementing this methodology lies in the difficulties in automatically comparing alternative design options for the selection of different materials. To overcome this limitation, the authors developed the BIM3LCA (Building Information Modelling Three Life Cycle Assessment) tool conceived to guide the decision-making process during the early design steps. This study introduces a Building Information Modelling (BIM) plug-in development and validates its application in a case study to support the multi-criteria building material selection based on the LCSA implementation at the early design stage. Three building material alternatives for the structural system of a multi-family residential building are employed to validate this plug-in. The results show the viability of using this tool during the early design stages and demonstrates the consistency of the results regarding the use of the BIM model to conduct the LCSA. The study discusses the benefits and limitations of the BIM3LCA tool. This research contributes towards the integration of multi-dimension real-time assessment in the building design process by using semantically rich BIM models.

Suggested Citation

  • Bernardette Soust-Verdaguer & José Antonio Gutiérrez Moreno & Carmen Llatas, 2023. "Utilization of an Automatic Tool for Building Material Selection by Integrating Life Cycle Sustainability Assessment in the Early Design Stages in BIM," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2274-:d:1047250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tajda Potrč Obrecht & Martin Röck & Endrit Hoxha & Alexander Passer, 2020. "BIM and LCA Integration: A Systematic Literature Review," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    2. Sara Giaveno & Anna Osello & Davide Garufi & Diego Santamaria Razo, 2021. "Embodied Carbon and Embodied Energy Scenarios in the Built Environment. Computational Design Meets EPDs," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhonghao Chen & Lin Chen & Xingyang Zhou & Lepeng Huang & Malindu Sandanayake & Pow-Seng Yap, 2024. "Recent Technological Advancements in BIM and LCA Integration for Sustainable Construction: A Review," Sustainability, MDPI, vol. 16(3), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Leśniak & Monika Górka & Izabela Skrzypczak, 2021. "Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study," Energies, MDPI, vol. 14(8), pages 1-20, April.
    2. Marie Nehasilová & Antonín Lupíšek & Petra Lupíšková Coufalová & Tomáš Kupsa & Jakub Veselka & Barbora Vlasatá & Julie Železná & Pavla Kunová & Martin Volf, 2022. "Rapid Environmental Assessment of Buildings: Linking Environmental and Cost Estimating Databases," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    3. Javier Orozco-Messana & Milagro Iborra-Lucas & Raimon Calabuig-Moreno, 2021. "Neighbourhood Modelling for Urban Sustainability Assessment," Sustainability, MDPI, vol. 13(9), pages 1-10, April.
    4. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    5. Yasser Yahya Al-Ashmori & Idris Othman & Al-Hussein M. H. Al-Aidrous, 2022. "“Values, Challenges, and Critical Success Factors” of Building Information Modelling (BIM) in Malaysia: Experts Perspective," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    6. Juan Francisco Fernández Rodríguez, 2023. "Sustainable Design Protocol in BIM Environments: Case Study of 3D Virtual Models of a Building in Seville (Spain) Based on BREEAM Method," Sustainability, MDPI, vol. 15(7), pages 1-29, March.
    7. Regitze Kjær Zimmermann & Simone Bruhn & Harpa Birgisdóttir, 2021. "BIM-Based Life Cycle Assessment of Buildings—An Investigation of Industry Practice and Needs," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    8. Marco Scherz & Antonija Ana Wieser & Alexander Passer & Helmuth Kreiner, 2022. "Implementation of Life Cycle Assessment (LCA) in the Procurement Process of Buildings: A Systematic Literature Review," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    9. Kai Xue & Md. Uzzal Hossain & Meng Liu & Mingjun Ma & Yizhi Zhang & Mengqiang Hu & XiaoYi Chen & Guangyu Cao, 2021. "BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    10. Rafael Horn & Sebastian Ebertshäuser & Roberta Di Bari & Olivia Jorgji & René Traunspurger & Petra von Both, 2020. "The BIM2LCA Approach: An Industry Foundation Classes (IFC)-Based Interface to Integrate Life Cycle Assessment in Integral Planning," Sustainability, MDPI, vol. 12(16), pages 1-30, August.
    11. Luka Adanič & Sara Guerra de Oliveira & Andrej Tibaut, 2021. "BIM and Mechanical Engineering—A Cross-Disciplinary Analysis," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    12. Jan Růžička & Jakub Veselka & Zdeněk Rudovský & Stanislav Vitásek & Petr Hájek, 2022. "BIM and Automation in Complex Building Assessment," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    13. Bernardette Soust-Verdaguer & Elisabetta Palumbo & Carmen Llatas & Álvaro Velasco Acevedo & María Dolores Fernández Galvéz & Endrit Hoxha & Alexander Passer, 2023. "The Use of Environmental Product Declarations of Construction Products as a Data Source to Conduct a Building Life-Cycle Assessment in Spain," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    14. Roberto Giordano & Federica Gallina & Benedetta Quaglio, 2021. "Analysis and Assessment of the Building Life Cycle. Indicators and Tools for the Early Design Stage," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    15. Chen Chen & Zengfeng Zhao & Jianzhuang Xiao & Robert Tiong, 2021. "A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    16. Ian Vázquez-Rowe & Cristina Córdova-Arias & Xavier Brioso & Sandra Santa-Cruz, 2021. "A Method to Include Life Cycle Assessment Results in Choosing by Advantage (CBA) Multicriteria Decision Analysis. A Case Study for Seismic Retrofit in Peruvian Primary Schools," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    17. Robert Karaszewski & Paweł Modrzyński & Gözde Türkmen Müldür & Jacek Wójcik, 2021. "Blockchain Technology in Life Cycle Assessment—New Research Trends," Energies, MDPI, vol. 14(24), pages 1-13, December.
    18. Adetayo Onososen & Innocent Musonda & Motheo Meta Tjebane, 2022. "Drivers of BIM-Based Life Cycle Sustainability Assessment of Buildings: An Interpretive Structural Modelling Approach," Sustainability, MDPI, vol. 14(17), pages 1-21, September.
    19. Tiziano Dalla Mora & Erika Bolzonello & Carmine Cavalliere & Fabio Peron, 2020. "Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends," Sustainability, MDPI, vol. 12(17), pages 1-33, September.
    20. Jakub Veselka & Marie Nehasilová & Karolína Dvořáková & Pavla Ryklová & Martin Volf & Jan Růžička & Antonín Lupíšek, 2020. "Recommendations for Developing a BIM for the Purpose of LCA in Green Building Certifications," Sustainability, MDPI, vol. 12(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2274-:d:1047250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.