IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11377-d656711.html
   My bibliography  Save this article

An Optimization-Based System Dynamics Simulation for Sustainable Policy Design in WEEE Management Systems

Author

Listed:
  • Camilo Llerena-Riascos

    (ALIADO—Analytics and Research for Decision Making, Department of Industrial Engineering, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia)

  • Sebastián Jaén

    (ALIADO—Analytics and Research for Decision Making, Department of Industrial Engineering, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia)

  • Jairo Rafael Montoya-Torres

    (Research Group in Logistics Systems, School of Engineering, Universidad de La Sabana, km 7 Autopista Norte de Bogota, D.C., Chia 140013, Colombia)

  • Juan G. Villegas

    (ALIADO—Analytics and Research for Decision Making, Department of Industrial Engineering, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia)

Abstract

The increase in the use of electrical and electronic devices worldwide has created a rapid growth of waste of electrical and electronic equipment (WEEE). The current paper presents an optimization-based simulation (OBS) approach that allows the design of sustainable WEEE management system policies. The proposed OBS approach integrates a system dynamics (SD) model and a mixed-integer nonlinear programming (MINLP) model to improve the representation and performance of the WEEE processes considering their operative and strategic interdependence. The SD component elicits the complexity of the WEEE generation process. Complementarily, the MINLP model periodically optimizes key variables of the WEEE management system. Computational results in a case study based on WEEE from Colombian mobile phones illustrates how an approach solely based on SD simulation is unable to capture the operative-strategic nature of the system and perform optimal parameter updates. By contrast, the OBS approach of this paper outperforms an exclusive SD analysis both in the economic and environmental performance of the system. It obtains 33% more profits and 65% more environmental benefits. Moreover, for this case study, the model suggests that the cornerstone of the WEEE management system for increasing its performance is the replacement rate.

Suggested Citation

  • Camilo Llerena-Riascos & Sebastián Jaén & Jairo Rafael Montoya-Torres & Juan G. Villegas, 2021. "An Optimization-Based System Dynamics Simulation for Sustainable Policy Design in WEEE Management Systems," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11377-:d:656711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11377/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11377/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    2. Florin Constantin Mihai & Maria-Grazie Gnoni & Christia Meidiana & Chukwunonye Ezeah & Valerio Elia, 2019. "Waste Electrical and Electronic Equipment (WEEE): Flows, Quantities, and Management—A Global Scenario," Post-Print hal-02276468, HAL.
    3. Cucchiella, Federica & D’Adamo, Idiano & Lenny Koh, S.C. & Rosa, Paolo, 2015. "Recycling of WEEEs: An economic assessment of present and future e-waste streams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 263-272.
    4. Renzheng Xue & Fengbin Zhang & Feng Tian, 2018. "A System Dynamics Model to Evaluate Effects of Retailer-Led Recycling Based on Dual Chains Competition: A Case of e-Waste in China," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
    5. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    6. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    7. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    8. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco & Verter, Vedat, 2012. "Multi-period reverse logistics network design," European Journal of Operational Research, Elsevier, vol. 220(1), pages 67-78.
    9. Aysegul Topcu & James C. Benneyan & Thomas P. Cullinane, 2013. "A simulation-optimisation approach for reconfigurable inventory space planning in remanufacturing facilities," International Journal of Business Performance and Supply Chain Modelling, Inderscience Enterprises Ltd, vol. 5(1), pages 86-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    2. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    3. Daniel Baratieri Valente & Ricardo César da Silva Guabiroba & Marco Antonio Conejero & Marcelino Aurélio Vieira Silva & Aldara da Silva César, 2021. "Economic analysis of waste electrical and electronic equipment management: a study involving recycling cooperatives in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17628-17649, December.
    4. Sohani Vihanga Withanage & Komal Habib, 2021. "Life Cycle Assessment and Material Flow Analysis: Two Under-Utilized Tools for Informing E-Waste Management," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    5. Chao Chen & Shenle Pan & Zhu Wang & Ray Y. Zhong, 2017. "Using taxis to collect citywide E-commerce reverse flows: a crowdsourcing solution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1833-1844, April.
    6. Hao Yu & Wei Deng Solvang, 2016. "A Stochastic Programming Approach with Improved Multi-Criteria Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical and Electronic Equipment (WEEE)," Sustainability, MDPI, vol. 8(12), pages 1-28, December.
    7. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    8. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    9. Hsieh, Chung-Chi & Lathifah, Artya, 2022. "Ordering and waste reuse decisions in a make-to-order system under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1290-1303.
    10. Mohammed Alkahtani & Aiman Ziout & Bashir Salah & Moath Alatefi & Abd Elatty E. Abd Elgawad & Ahmed Badwelan & Umar Syarif, 2021. "An Insight into Reverse Logistics with a Focus on Collection Systems," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    11. Geraldo Cardoso de Oliveira Neto & Auro de Jesus Cardoso Correia & Henrricco Nieves Pujol Tucci & Rosângela Andrade Pita Brancalhão Melatto & Marlene Amorim, 2023. "Reverse Chain for Electronic Waste to Promote Circular Economy in Brazil: A Survey on Electronics Manufacturers and Importers," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    12. Kong, Junjun & Chua, Geoffrey A. & Yang, Feng, 2023. "Firms’ cooperation on recycling investments in a three-echelon reverse supply chain," International Journal of Production Economics, Elsevier, vol. 263(C).
    13. Diabat, Ali & Jebali, Aida, 2021. "Multi-product and multi-period closed loop supply chain network design under take-back legislation," International Journal of Production Economics, Elsevier, vol. 231(C).
    14. Konstantaras, Ioannis & Skouri, Konstantina & Benkherouf, Lakdere, 2021. "Optimizing inventory decisions for a closed–loop supply chain model under a carbon tax regulatory mechanism," International Journal of Production Economics, Elsevier, vol. 239(C).
    15. Guzzo, Daniel & Rodrigues, Vinicius Picanço & Mascarenhas, Janaina, 2021. "A systems representation of the Circular Economy: Transition scenarios in the electrical and electronic equipment (EEE) industry," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    16. Zerbino, Pierluigi & Stefanini, Alessandro & Aloini, Davide & Dulmin, Riccardo & Mininno, Valeria, 2021. "Curling linearity into circularity: The benefits of formal scavenging in closed-loop settings," International Journal of Production Economics, Elsevier, vol. 240(C).
    17. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    18. Olga Lingaitienė & Aurelija Burinskienė & Vida Davidavičienė, 2022. "Case Study of Municipal Waste and Its Reliance on Reverse Logistics in European Countries," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    19. Hervani, Aref Agahei & Sarkis, Joseph & Helms, Marilyn M., 2017. "Environmental goods valuations for social sustainability: A conceptual framework," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 137-153.
    20. Vahab Vahdat & Mohammad Ali Vahdatzad, 2017. "Accelerated Benders’ Decomposition for Integrated Forward/Reverse Logistics Network Design under Uncertainty," Logistics, MDPI, vol. 1(2), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11377-:d:656711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.