IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10675-d643372.html
   My bibliography  Save this article

Evaluation and Improvement of PCM Melting in Double Tube Heat Exchangers Using Different Combinations of Nanoparticles and PCM (The Case of Renewable Energy Systems)

Author

Listed:
  • Ali Motevali

    (Department of Mechanics of Biosystem Engineering, Sari Agricultural Sciences and Natural Resources University, Sari 48181-66996, Iran)

  • Mohammadreza Hasandust Rostami

    (Department of Mechanics of Biosystems Engineering, Tarbiat Modares University, Tehran 14115-111, Iran)

  • Gholamhassan Najafi

    (Department of Mechanics of Biosystems Engineering, Tarbiat Modares University, Tehran 14115-111, Iran)

  • Wei-Mon Yan

    (Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

In this work, the melting process of phase change material (PCM) in double tube heat exchangers was investigated and evaluated through the use of different combinations (1, 2, 3% Nano-Enhanced PCM and 1, 3, 5% Nano-HTF) of GQD, as well as SWCNT nanoparticles and PCM (RT82). In this study, the effect of three different methods, namely the dispersion of nanoparticles in PCM (nano-enhanced PCM), the dispersion of nanoparticles in HTF (nano-HTF), and the simultaneous dispersion of nanoparticles in PCM and HTF (nano-enhanced PCM, nano-HTF) concerning the nanoparticles participation in the thermal energy storage system in a double tube heat exchanger was evaluated. Other effective factors, such as the inlet fluid temperature, different Reynolds numbers, fin as well as new parameter of pipe, and fin thickness were also evaluated. The results showed that the highest effect of different parameters on the PCM melting process was related to the 1% nano-HTF and 3% nano-enhanced PCM nanoparticles of SWCNT, which decreased the PCM melting rate by about 39%. The evaluation of the effect of pipe and fan thickness also showed that the melting rate improved by 31% through reducing the thickness of the HTF fin and pipe. In general, the current study followed two purposes first, to examine three methods of the dispersion of nanoparticles in the thermal energy storage system; second, to reduce the thickness of the tube and fin. Findings of the study yielded positive results.

Suggested Citation

  • Ali Motevali & Mohammadreza Hasandust Rostami & Gholamhassan Najafi & Wei-Mon Yan, 2021. "Evaluation and Improvement of PCM Melting in Double Tube Heat Exchangers Using Different Combinations of Nanoparticles and PCM (The Case of Renewable Energy Systems)," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10675-:d:643372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Budi Kristiawan & Budi Santoso & Agung Tri Wijayanta & Muhammad Aziz & Takahiko Miyazaki, 2018. "Heat Transfer Enhancement of TiO 2 /Water Nanofluid at Laminar and Turbulent Flows: A Numerical Approach for Evaluating the Effect of Nanoparticle Loadings," Energies, MDPI, vol. 11(6), pages 1-15, June.
    2. Ettouney, Hisham M. & Alatiqi, Imad & Al-Sahali, Mohammad & Ahmad Al-Ali, Safaa, 2004. "Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems," Renewable Energy, Elsevier, vol. 29(6), pages 841-860.
    3. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    4. Pahamli, Younes & Hosseini, Mohammad J. & Ranjbar, Ali A. & Bahrampoury, Rasool, 2016. "Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers," Renewable Energy, Elsevier, vol. 97(C), pages 344-357.
    5. Medrano, M. & Yilmaz, M.O. & Nogués, M. & Martorell, I. & Roca, Joan & Cabeza, Luisa F., 2009. "Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems," Applied Energy, Elsevier, vol. 86(10), pages 2047-2055, October.
    6. Esapour, M. & Hosseini, M.J. & Ranjbar, A.A. & Pahamli, Y. & Bahrampoury, R., 2016. "Phase change in multi-tube heat exchangers," Renewable Energy, Elsevier, vol. 85(C), pages 1017-1025.
    7. M. T. Nitsas & I. P. Koronaki, 2020. "Thermal Analysis of Pure and Nanoparticle-Enhanced PCM—Application in Concentric Tube Heat Exchanger," Energies, MDPI, vol. 13(15), pages 1-20, July.
    8. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2018. "Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins," Applied Energy, Elsevier, vol. 211(C), pages 975-986.
    9. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2006. "Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 31(13), pages 2025-2041.
    10. Budi Kristiawan & Agung Tri Wijayanta & Koji Enoki & Takahiko Miyazaki & Muhammad Aziz, 2019. "Heat Transfer Enhancement of TiO 2 /Water Nanofluids Flowing Inside a Square Minichannel with a Microfin Structure: A Numerical Investigation," Energies, MDPI, vol. 12(16), pages 1-21, August.
    11. Matthew Fong & Jundika Kurnia & Agus P. Sasmito, 2020. "Application of Phase Change Material-Based Thermal Capacitor in Double Tube Heat Exchanger—A Numerical Investigation," Energies, MDPI, vol. 13(17), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pahamli, Y. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2018. "Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 30-42.
    2. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    3. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    4. Pahamli, Y. & Hosseini, M.J. & Ardahaie, S. Saedi & Ranjbar, A.A., 2022. "Improvement of a phase change heat storage system by Blossom-Shaped Fins: Energy analysis," Renewable Energy, Elsevier, vol. 182(C), pages 192-215.
    5. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
    6. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    7. Longeon, Martin & Soupart, Adèle & Fourmigué, Jean-François & Bruch, Arnaud & Marty, Philippe, 2013. "Experimental and numerical study of annular PCM storage in the presence of natural convection," Applied Energy, Elsevier, vol. 112(C), pages 175-184.
    8. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Ji, W.H. & Wang, Z.Y. & Liang, L., 2019. "Thermal performance of a thermal-storage unit by using a multichannel flat tube and rectangular fins," Applied Energy, Elsevier, vol. 250(C), pages 1280-1291.
    9. Rahimi, M. & Ardahaie, S. Saedi & Hosseini, M.J. & Gorzin, M., 2020. "Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 1845-1860.
    10. Ma, Y. & Tao, Y. & Shi, L. & Liu, Q.G. & Wang, Y. & Tu, J.Y., 2021. "Investigations on the thermal performance of a novel thermal energy storage unit for poor solar conditions," Renewable Energy, Elsevier, vol. 180(C), pages 166-177.
    11. Yang, Moucun & Moghimi, M.A. & Loillier, R. & Markides, C.N. & Kadivar, M., 2023. "Design of a latent heat thermal energy storage system under simultaneous charging and discharging for solar domestic hot water applications," Applied Energy, Elsevier, vol. 336(C).
    12. Anish., R & Joybari, Mahmood Mastani & Seddegh, Saeid & Mariappan, V. & Haghighat, Fariborz & Yuan, Yanping, 2021. "Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation," Renewable Energy, Elsevier, vol. 163(C), pages 423-436.
    13. Murray, Robynne E. & Groulx, Dominic, 2014. "Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging," Renewable Energy, Elsevier, vol. 62(C), pages 571-581.
    14. Ebrahimi, A. & Hosseini, M.J. & Ranjbar, A.A. & Rahimi, M. & Bahrampoury, R., 2019. "Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe," Renewable Energy, Elsevier, vol. 138(C), pages 378-394.
    15. Reyes, A. & Henríquez-Vargas, L. & Rivera, J. & Sepúlveda, F., 2017. "Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material," Renewable Energy, Elsevier, vol. 101(C), pages 225-235.
    16. Janusz T. Cieśliński & Maciej Fabrykiewicz, 2023. "Thermal Energy Storage with PCMs in Shell-and-Tube Units: A Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    17. Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Goswami, D. Yogi & Stefanakos, Elias, 2018. "Influence of design on performance of a latent heat storage system at high temperatures," Applied Energy, Elsevier, vol. 224(C), pages 220-229.
    18. Jegadheeswaran, S. & Pohekar, Sanjay D., 2009. "Performance enhancement in latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2225-2244, December.
    19. Abhishek Anand & Karunesh Kant & Amritanshu Shukla & Chang-Ren Chen & Atul Sharma, 2021. "Thermal Stability and Reliability Test of Some Saturated Fatty Acids for Low and Medium Temperature Thermal Energy Storage," Energies, MDPI, vol. 14(15), pages 1-22, July.
    20. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10675-:d:643372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.