IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9085-d613895.html
   My bibliography  Save this article

The Carbon Footprint of Airport Ground Access as Part of an Outbound Holiday Trip

Author

Listed:
  • Raúl Hernández-Martín

    (Department of Applied Economics and Quantitative Methods, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain)

  • Hugo Padrón-Ávila

    (Department of Applied Economics and Quantitative Methods, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain)

Abstract

In this paper, greenhouse gas (GHG) emissions derived from airport surface access of outbound German tourists travelling to the Canary Islands have been estimated. It is argued that carbon footprint estimations in tourism must be improved to incorporate the transport to the airports within the country of origin. To do so, statistical data from the Tourism Expenditure Survey of the Canary Islands have been used. In particular, the postcodes of a large sample of German tourists visiting the archipelago from 2012 to 2014 are used to identify their residence and the distances travelled to their chosen airport. The findings of the paper contribute to the literature on tourism carbon footprints, including an estimate of the share of airport surface access emissions in a typical outbound sun and beach holiday trip. Airport ground access accounted for 8.17% of transport-related emissions. These results have implications for urban planners, transport firms, and tourism management.

Suggested Citation

  • Raúl Hernández-Martín & Hugo Padrón-Ávila, 2021. "The Carbon Footprint of Airport Ground Access as Part of an Outbound Holiday Trip," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9085-:d:613895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frédéric Dobruszkes, 2019. "Why do planes not fly the shortest routes? A review," ULB Institutional Repository 2013/293810, ULB -- Universite Libre de Bruxelles.
    2. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 522-528, June.
    3. Akar, Gulsah, 2013. "Ground access to airports, case study: Port Columbus International Airport," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 25-31.
    4. Budd, Lucy & Ison, Stephen & Budd, Thomas, 2016. "Improving the environmental performance of airport surface access in the UK: The role of public transport," Research in Transportation Economics, Elsevier, vol. 59(C), pages 185-195.
    5. Sun, Ya-Yen, 2014. "A framework to account for the tourism carbon footprint at island destinations," Tourism Management, Elsevier, vol. 45(C), pages 16-27.
    6. Tim Ryley & Jaafar Elmirghani & Tom Budd & Chikage Miyoshi & Keith Mason & Richard Moxon & Imad Ahmed & Bilal Qazi & Alberto Zanni, 2013. "Sustainable Development and Airport Surface Access: The Role of Technological Innovation and Behavioral Change," Sustainability, MDPI, vol. 5(4), pages 1-15, April.
    7. Miyoshi, Chikage & Mason, Keith J., 2013. "The damage cost of carbon dioxide emissions produced by passengers on airport surface access: the case of Manchester Airport," Journal of Transport Geography, Elsevier, vol. 28(C), pages 137-143.
    8. Turner, Karen & Munday, Max & McGregor, Peter & Swales, Kim, 2012. "How responsible is a region for its carbon emissions? An empirical general equilibrium analysis," Ecological Economics, Elsevier, vol. 76(C), pages 70-78.
    9. Meiwei Tang & Shouzhong Ge, 2018. "Accounting for carbon emissions associated with tourism-related consumption," Tourism Economics, , vol. 24(5), pages 510-525, August.
    10. Budd, Thomas & Ryley, Tim & Ison, Stephen, 2014. "Airport ground access and private car use: a segmentation analysis," Journal of Transport Geography, Elsevier, vol. 36(C), pages 106-115.
    11. Sun, Ya-Yen, 2016. "Decomposition of tourism greenhouse gas emissions: Revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions," Tourism Management, Elsevier, vol. 55(C), pages 326-336.
    12. Frédéric Dobruszkes, 2019. "Why do planes not fly the shortest routes? A review," ULB Institutional Repository 2013/289038, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Ya-Yen & Cadarso, Maria Angeles & Driml, Sally, 2020. "Tourism carbon footprint inventories: A review of the environmentally extended input-output approach," Annals of Tourism Research, Elsevier, vol. 82(C).
    2. Yue Pan & Gangmin Weng & Conghui Li & Jianpu Li, 2021. "Coupling Coordination and Influencing Factors among Tourism Carbon Emission, Tourism Economic and Tourism Innovation," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    3. Postorino, Maria Nadia & Mantecchini, Luca & Paganelli, Filippo, 2019. "Improving taxi-out operations at city airports to reduce CO2 emissions," Transport Policy, Elsevier, vol. 80(C), pages 167-176.
    4. Ugirumurera, Juliette & Severino, Joseph & Ficenec, Karen & Ge, Yanbo & Wang, Qichao & Williams, Lindy & Chae, Junghoon & Lunacek, Monte & Phillips, Caleb, 2021. "A modeling framework for designing and evaluating curbside traffic management policies at Dallas-Fort Worth International Airport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 130-150.
    5. Ahmed Eid & May Salah & Mahmoud Barakat & Matevz Obrecht, 2022. "Airport Sustainability Awareness: A Theoretical Framework," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    6. Natalia Porto & Matías Ciaschi, 2021. "Reformulating the tourism-extended environmental Kuznets curve: A quantile regression analysis under environmental legal conditions," Tourism Economics, , vol. 27(5), pages 991-1014, August.
    7. Yazdanpanah, Mahdi & Hosseinlou, Mansour Hadji, 2016. "The influence of personality traits on airport public transport access mode choice: A hybrid latent class choice modeling approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 147-163.
    8. Bing Xia & Suocheng Dong & Zehong Li & Minyan Zhao & Dongqi Sun & Wenbiao Zhang & Yu Li, 2022. "Eco-Efficiency and Its Drivers in Tourism Sectors with Respect to Carbon Emissions from the Supply Chain: An Integrated EEIO and DEA Approach," IJERPH, MDPI, vol. 19(11), pages 1-26, June.
    9. Arshian Sharif & Shrabani Saha & Neil Campbell & Avik Sinha & Dalia M. Ibrahiem, 2020. "Tourism, environment and energy: an analysis for China," Current Issues in Tourism, Taylor & Francis Journals, vol. 23(23), pages 2930-2949, December.
    10. Frédéric Dobruszkes & Didier Peeters, 2019. "The magnitude of detours faced by commercial flights: A global assessment," ULB Institutional Repository 2013/293811, ULB -- Universite Libre de Bruxelles.
    11. Zaidan, Esmat & Abulibdeh, Ammar, 2018. "Modeling ground access mode choice behavior for Hamad International Airport in the 2022 FIFA World Cup city, Doha, Qatar," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 32-45.
    12. Erdoğan, Seyfettin & Gedikli, Ayfer & Cevik, Emrah Ismail & Erdoğan, Fatma, 2022. "Eco-friendly technologies, international tourism and carbon emissions: Evidence from the most visited countries," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    13. Jianping Zha & Rong Fan & Yao Yao & Lamei He & Yuanyuan Meng, 2021. "Framework for accounting for tourism carbon emissions in China: An industrial linkage perspective," Tourism Economics, , vol. 27(7), pages 1430-1460, November.
    14. Chao Bi & Jingjing Zeng, 2019. "Nonlinear and Spatial Effects of Tourism on Carbon Emissions in China: A Spatial Econometric Approach," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    15. Pedro Dorta Antequera & Jaime Díaz Pacheco & Abel López Díez & Celia Bethencourt Herrera, 2021. "Tourism, Transport and Climate Change: The Carbon Footprint of International Air Traffic on Islands," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    16. Chengcai Tang & Ziwei Wan & Pin Ng & Xiangyi Dai & Qiuxiang Sheng & Da Chen, 2019. "Temporal and Spatial Evolution of Carbon Emissions and Their Influencing Factors for Tourist Attractions at Heritage Tourist Destinations," Sustainability, MDPI, vol. 11(21), pages 1-19, October.
    17. Sigler, Devon & Wang, Qichao & Liu, Zhaocai & Garikapati, Venu & Kotz, Andrew & Kelly, Kenneth J. & Lunacek, Monte & Phillips, Caleb, 2021. "Route optimization for energy efficient airport shuttle operations – A case study from Dallas Fort worth International Airport," Journal of Air Transport Management, Elsevier, vol. 94(C).
    18. Kağan Albayrak, Muhammed Bilge & Özcan, İsmail Çağrı & Can, Raif & Dobruszkes, Frédéric, 2020. "The determinants of air passenger traffic at Turkish airports," Journal of Air Transport Management, Elsevier, vol. 86(C).
    19. Dobruszkes, Frédéric & Peeters, Didier, 2019. "The magnitude of detours faced by commercial flights: A global assessment," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    20. Gokasar, Ilgin & Gunay, Gurkan, 2017. "Mode choice behavior modeling of ground access to airports: A case study in Istanbul, Turkey," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 1-7.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9085-:d:613895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.