IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7510-d589028.html
   My bibliography  Save this article

Forest Structure and Composition under Contrasting Precipitation Regimes in the High Mountains, Western Nepal

Author

Listed:
  • Kishor Prasad Bhatta

    (Faculty of Forest Science and Forest Ecology, Georg-August-Universität, 37077 Goettingen, Germany)

  • Anisha Aryal

    (Faculty of Environmental Sciences, Technische Universität Dresden, 01737 Dresden, Germany)

  • Himlal Baral

    (Center for International Forestry Research (CIFOR), Jalan CIFOR, Situ Gede, Bogor 16115, Indonesia
    School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, VIC 3010, Australia)

  • Sujan Khanal

    (Federation of Community Forestry Users, Nepal (FECOFUN), Duwakot 44800, Nepal)

  • Amul Kumar Acharya

    (Forest Research and Training Centre, Babar Mahal, Kathmandu 44600, Nepal)

  • Chanthavone Phomphakdy

    (Faculty of Forest Science and Forest Ecology, Georg-August-Universität, 37077 Goettingen, Germany)

  • Rinzin Dorji

    (Faculty of Forest Science and Forest Ecology, Georg-August-Universität, 37077 Goettingen, Germany)

Abstract

The high mountains stretch over 20.4% of Nepal’s land surface with diverse climatic conditions and associated vegetation types. An understanding of tree species and forest structural pattern variations across different climatic regions is crucial for mountain ecology. This study strived to carry out a comparative evaluation of species diversity, main stand variables, and canopy cover of forests with contrasting precipitation conditions in the Annapurna range. Firstly, climate data provided by CHELSA version 1.2, were used to identify distinct precipitation regimes. Lamjung and Mustang were selected as two contrasting precipitation regions, and have average annual precipitation of 2965 mm and 723 mm, respectively. Stratified random sampling was used to study 16 plots, each measuring 500 m 2 and near the tree line at an elevation range of 3000 to 4000 m across different precipitation conditions. In total, 870 trees were identified and measured. Five hemispherical photos using a fisheye lens were taken in each plot for recording and analyzing canopy cover. Margalef’s index was used to measure species richness, while two diversity indices: the Shannon–Wiener Index and Simpson Index were used for species diversity. Dominant tree species in both study regions were identified through the Important Value Index (IVI). The Wilcoxon rank-sum test was employed to determine the differences in forest structure and composition variables between the two precipitation regimes. In total, 13 species were recorded with broadleaved species predominating in the high precipitation region and coniferous species in the low precipitation region. Higher species richness and species diversity were recorded in the low precipitation region, whereas the main stand variables: basal area and stem density were found to be higher in the high precipitation region. Overall, an inverse J-shaped diameter distribution was found in both precipitation regions signifying uneven-aged forest. A higher proportion of leaning and buttressed trees were recorded in the high precipitation region. However, similar forest canopy cover conditions (>90%) were observed in both study regions. The findings of this research provide a comprehensive narrative of tree species and forest structure across distinct precipitation regimes, which can be crucial to administrators and local people for the sustainable management of resources in this complex region.

Suggested Citation

  • Kishor Prasad Bhatta & Anisha Aryal & Himlal Baral & Sujan Khanal & Amul Kumar Acharya & Chanthavone Phomphakdy & Rinzin Dorji, 2021. "Forest Structure and Composition under Contrasting Precipitation Regimes in the High Mountains, Western Nepal," Sustainability, MDPI, vol. 13(13), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7510-:d:589028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hans ter Steege & Nigel C. A. Pitman & Oliver L. Phillips & Jerome Chave & Daniel Sabatier & Alvaro Duque & Jean-François Molino & Marie-Françoise Prévost & Rodolphe Spichiger & Hernán Castellanos & P, 2006. "Continental-scale patterns of canopy tree composition and function across Amazonia," Nature, Nature, vol. 443(7110), pages 444-447, September.
    2. Andrew J. Parsons & Richard D. Law & Michael P. Searle & Richard J. Phillips & Geoffrey E. Lloyd, 2016. "Geology of the Dhaulagiri-Annapurna-Manaslu Himalaya, Western Region, Nepal. 1:200,000," Journal of Maps, Taylor & Francis Journals, vol. 12(1), pages 100-110, January.
    3. Hiltner, Ulrike & Bräuning, Achim & Gebrekirstos, Aster & Huth, Andreas & Fischer, Rico, 2016. "Impacts of precipitation variability on the dynamics of a dry tropical montane forest," Ecological Modelling, Elsevier, vol. 320(C), pages 92-101.
    4. Bettina M. J. Engelbrecht & Liza S. Comita & Richard Condit & Thomas A. Kursar & Melvin T. Tyree & Benjamin L. Turner & Stephen P. Hubbell, 2007. "Drought sensitivity shapes species distribution patterns in tropical forests," Nature, Nature, vol. 447(7140), pages 80-82, May.
    5. George W. Koch & Stephen C. Sillett & Gregory M. Jennings & Stephen D. Davis, 2004. "The limits to tree height," Nature, Nature, vol. 428(6985), pages 851-854, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura A Schreeg & W John Kress & David L Erickson & Nathan G Swenson, 2010. "Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    2. Fernando Abad-Franch & Gonçalo Ferraz & Ciro Campos & Francisco S Palomeque & Mario J Grijalva & H Marcelo Aguilar & Michael A Miles, 2010. "Modeling Disease Vector Occurrence when Detection Is Imperfect: Infestation of Amazonian Palm Trees by Triatomine Bugs at Three Spatial Scales," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 4(3), pages 1-11, March.
    3. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Hong Chen & Haiyang Wang & Yanfang Liu & Li Dong, 2013. "Altitudinal Variations of Ground Tissue and Xylem Tissue in Terminal Shoot of Woody Species: Implications for Treeline Formation," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    5. Haoze Zhang & Mingliang Gao & Fuying Liu & Huabin Yuan & Zhendong Liu & Mingming Zhang & Quanqi Li & Rui Zong, 2024. "Characteristic of soil moisture utilisation with different water-sensitive cultivars of summer maize in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(4), pages 210-219.
    6. Fernández, J.E. & Rodriguez-Dominguez, C.M. & Perez-Martin, A. & Zimmermann, U. & Rüger, S. & Martín-Palomo, M.J. & Torres-Ruiz, J.M. & Cuevas, M.V. & Sann, C. & Ehrenberger, W. & Diaz-Espejo, A., 2011. "Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 100(1), pages 25-35.
    7. Jingjing Jia & Zhiguo Zhang & Zhijuan Tai & Ming Yang & Yuxin Luo & Zhuo Yang & Yumei Zhou, 2023. "Construction and Demolition Waste as Substrate Component Improved the Growth of Container-Grown Duranta repens," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    8. Matheus Henrique Nunes & Marcel Caritá Vaz & José Luís Campana Camargo & William F. Laurance & Ana Andrade & Alberto Vicentini & Susan Laurance & Pasi Raumonen & Toby Jackson & Gabriela Zuquim & Jin W, 2023. "Edge effects on tree architecture exacerbate biomass loss of fragmented Amazonian forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Aryal, Kishor & Maraseni, Tek & Apan, Armando, 2023. "Spatial dynamics of biophysical trade-offs and synergies among ecosystem services in the Himalayas," Ecosystem Services, Elsevier, vol. 59(C).
    10. Rahul Bhadouria & Pratap Srivastava & Rishikesh Singh & Sachchidanand Tripathi & Hema Singh & A. S. Raghubanshi, 2017. "Tree seedling establishment in dry tropics: an urgent need of interaction studies," Environment Systems and Decisions, Springer, vol. 37(1), pages 88-100, March.
    11. Maclean, Ilya M.D. & Bennie, Jonathan J. & Scott, Amanda J. & Wilson, Robert J., 2012. "A high-resolution model of soil and surface water conditions," Ecological Modelling, Elsevier, vol. 237, pages 109-119.
    12. Elodie Allié & Raphaël Pélissier & Julien Engel & Pascal Petronelli & Vincent Freycon & Vincent Deblauwe & Laure Soucémarianadin & Jean Weigel & Christopher Baraloto, 2015. "Pervasive Local-Scale Tree-Soil Habitat Association in a Tropical Forest Community," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-16, November.
    13. Kaitaniemi, Pekka & Lintunen, Anna & Sievänen, Risto, 2020. "Power-law estimation of branch growth," Ecological Modelling, Elsevier, vol. 416(C).
    14. Bing Wang & Fenxiang Wen & Jiangtao Wu & Xiaojun Wang & Yani Hu, 2014. "Vertical Profiles of Soil Water Content as Influenced by Environmental Factors in a Small Catchment on the Hilly-Gully Loess Plateau," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    15. Ramage, Michael H. & Burridge, Henry & Busse-Wicher, Marta & Fereday, George & Reynolds, Thomas & Shah, Darshil U. & Wu, Guanglu & Yu, Li & Fleming, Patrick & Densley-Tingley, Danielle & Allwood, Juli, 2017. "The wood from the trees: The use of timber in construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 333-359.
    16. Cressman, Ross & Halloway, Abdel & McNickle, Gordon G. & Apaloo, Joe & Brown, Joel S. & Vincent, Thomas L., 2017. "Unlimited niche packing in a Lotka–Volterra competition game," Theoretical Population Biology, Elsevier, vol. 116(C), pages 1-17.
    17. Rüger, S. & Ehrenberger, W. & Arend, M. & Geßner, P. & Zimmermann, G. & Zimmermann, D. & Bentrup, F.-W. & Nadler, A. & Raveh, E. & Sukhorukov, V.L. & Zimmermann, U., 2010. "Comparative monitoring of temporal and spatial changes in tree water status using the non-invasive leaf patch clamp pressure probe and the pressure bomb," Agricultural Water Management, Elsevier, vol. 98(2), pages 283-290, December.
    18. Zhang, Yuwen & Ding, Changjun & Liu, Yan & Li, Shan & Li, Ximeng & Xi, Benye & Duan, Jie, 2023. "Xylem anatomical and hydraulic traits vary within crown but not respond to water and nitrogen addition in Populus tomentosa," Agricultural Water Management, Elsevier, vol. 278(C).
    19. Tyson L Swetnam & Christopher D O’Connor & Ann M Lynch, 2016. "Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    20. Hunt, Allen G. & Faybishenko, Boris & Powell, Thomas L., 2020. "A new phenomenological model to describe root-soil interactions based on percolation theory," Ecological Modelling, Elsevier, vol. 433(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7510-:d:589028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.