IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3720-d353855.html
   My bibliography  Save this article

Environmental Profile on Building Material Passports for Hot Climates

Author

Listed:
  • Amjad Almusaed

    (Department of Construction Engineering and Lighting Science, Jönköping University, 551 11 Jönköping, Sweden)

  • Asaad Almssad

    (Head of Building Technology, Karlstad University Sweden, 651 88 Karlstad, Sweden)

  • Raad Z. Homod

    (Department of Oil and Gas Engineering, Basrah University for Oil and Gas, Garmat Ali Campus, Basrah 61004, Iraq)

  • Ibrahim Yitmen

    (Department of Construction Engineering and Lighting Science, Jönköping University, 551 11 Jönköping, Sweden)

Abstract

Vernacular building materials and models represent the construction methods and building materials used in a healthy manner. Local building materials such as gravel, sand, stone, and clay are used in their natural state or with minor processing and cleaning to mainly satisfy local household needs (production of concrete, mortar, ballast, silicate, and clay bricks and other products). In hot climates, the concept of natural building materials was used in a form that can currently be applied in different kinds of buildings. This concept depends on the proper consideration of the climate characteristics of the construction area. A material passport is a qualitative and quantitative documentation of the material composition of a building, displaying materials embedded in buildings as well as showing their recycling potential and environmental impact. This study will consider two usages of building materials. The first is the traditional use of building materials and their importance in the application of vernacular building strategies as an essential global bioclimatic method in sustainable architecture. The second is the affordable use of new building materials for their availability and utilization by a large part of society in a way to add more detail to research. The article aims to create an objective reading and analysis regarding specific building materials in order to generate a competent solution of materials that is suitable for building requirements in hot climates. This study evaluates the most suitable Building Material Passports needed in hot climates, where the environmental profile must be analyzed to confirm the use of natural materials.

Suggested Citation

  • Amjad Almusaed & Asaad Almssad & Raad Z. Homod & Ibrahim Yitmen, 2020. "Environmental Profile on Building Material Passports for Hot Climates," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3720-:d:353855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    2. Almssad, Asaad & Almusaed, Amjad, 2015. "Environmental reply to vernacular habitat conformation from a vast areas of Scandinavia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 825-834.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fupeng Zhang & Lei Shi & Simian Liu & Jiaqi Shi & Yong Yu, 2022. "Sustainable Renovation and Assessment of Existing Aging Rammed Earth Dwellings in Hunan, China," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    2. Fupeng Zhang & Lei Shi & Simian Liu & Jiaqi Shi & Qian Ma & Jinyue Zhang, 2022. "Climate Adaptability Based on Indoor Physical Environment of Traditional Dwelling in North Dong Areas, China," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    3. Asaad Almssad & Amjad Almusaed & Raad Z. Homod, 2022. "Masonry in the Context of Sustainable Buildings: A Review of the Brick Role in Architecture," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    4. Suzana Knežević & Dunja Prokić, 2023. "Indicators as a Foundation of Eco-Labelling of Baked Clay Construction Products in the Republic of Serbia," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    5. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    6. Amjad Almusaed & Ibrahim Yitmen & Asaad Almssad, 2023. "Reviewing and Integrating AEC Practices into Industry 6.0: Strategies for Smart and Sustainable Future-Built Environments," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    7. Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).
    8. Chuloh Jung & Nahla Al Qassimi, 2022. "Investigating the Emission of Hazardous Chemical Substances from Mashrabiya Used for Indoor Air Quality in Hot Desert Climate," Sustainability, MDPI, vol. 14(5), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Casado-Vara & Angel Martín del Rey & Ricardo S. Alonso & Saber Trabelsi & Juan M. Corchado, 2020. "A New Stability Criterion for IoT Systems in Smart Buildings: Temperature Case Study," Mathematics, MDPI, vol. 8(9), pages 1-13, August.
    2. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    3. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    4. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    5. Homod, Raad Z. & Togun, Hussein & Ateeq, Adnan A. & Al-Mousawi, Fadhel Noraldeen & Yaseen, Zaher Mundher & Al-Kouz, Wael & Hussein, Ahmed Kadhim & Alawi, Omer A. & Goodarzi, Marjan & Ahmadi, Goodarz, 2022. "An innovative clustering technique to generate hybrid modeling of cooling coils for energy analysis: A case study for control performance in HVAC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).
    7. Pouria Bahramnia & Seyyed Mohammad Hosseini Rostami & Jin Wang & Gwang-jun Kim, 2019. "Modeling and Controlling of Temperature and Humidity in Building Heating, Ventilating, and Air Conditioning System Using Model Predictive Control," Energies, MDPI, vol. 12(24), pages 1-24, December.
    8. Ono, Hitoi & Ohtani, Yuichi & Matsuo, Minoru & Yamaguchi, Toru & Yokoyama, Ryohei, 2021. "Optimal operation of heat source and air conditioning system with thermal storage tank using nonlinear programming," Energy, Elsevier, vol. 222(C).
    9. Aguilar, J. & Garces-Jimenez, A. & R-Moreno, M.D. & García, Rodrigo, 2021. "A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. V. S. K. V. Harish & Arun Kumar & Tabish Alam & Paolo Blecich, 2021. "Assessment of State-Space Building Energy System Models in Terms of Stability and Controllability," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    11. Alexandre Correia & Luís Miguel Ferreira & Paulo Coimbra & Pedro Moura & Aníbal T. de Almeida, 2022. "Smart Thermostats for a Campus Microgrid: Demand Control and Improving Air Quality," Energies, MDPI, vol. 15(4), pages 1-21, February.
    12. Nam-Chul Seong & Jee-Heon Kim & Wonchang Choi, 2019. "Optimal Control Strategy for Variable Air Volume Air-Conditioning Systems Using Genetic Algorithms," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    13. Joanna Piotrowska-Woroniak & Tomasz Szul & Krzysztof Cieśliński & Jozef Krilek, 2022. "The Impact of Weather-Forecast-Based Regulation on Energy Savings for Heating in Multi-Family Buildings," Energies, MDPI, vol. 15(19), pages 1-30, October.
    14. Joanna Piotrowska-Woroniak & Krzysztof Cieśliński & Grzegorz Woroniak & Jonas Bielskus, 2022. "The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Build," Energies, MDPI, vol. 15(8), pages 1-32, April.
    15. Elena Korneeva & Nina Olinder & Wadim Strielkowski, 2021. "Consumer Attitudes to the Smart Home Technologies and the Internet of Things (IoT)," Energies, MDPI, vol. 14(23), pages 1-15, November.
    16. Zhu, Li & Chen, Sarula & Yang, Yang & Tian, Wei & Sun, Yong & Lyu, Mian, 2019. "Global sensitivity analysis on borehole thermal energy storage performances under intermittent operation mode in the first charging phase," Renewable Energy, Elsevier, vol. 143(C), pages 183-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3720-:d:353855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.