IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p3065-d344191.html
   My bibliography  Save this article

The Dynamic Evolution of the Ecological Footprint and Ecological Capacity of Qinghai Province

Author

Listed:
  • Jing Guo

    (Key Laboratory of Restoration Ecology for Cold Regions in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Science; Xining 810008, China
    Research Department of Ecological Environment, Qinghai Academy of Social Sciences, Xining 810000, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jun Ren

    (Graduate School of Qinghai University, Qinghai University, Xining 810016, China)

  • Xiaotao Huang

    (Key Laboratory of Restoration Ecology for Cold Regions in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Science; Xining 810008, China)

  • Guifang He

    (College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China)

  • Yan Shi

    (Planning Department, Xining Urban Planning Research Center, Xining 810001, China)

  • Huakun Zhou

    (Key Laboratory of Restoration Ecology for Cold Regions in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Science; Xining 810008, China)

Abstract

Based on the ecological footprint (EF) model, the dynamic changes in the per capita EF and per capita ecological carrying capacity (EC) in Qinghai Province from 2007 to 2017 were quantitatively analysed. The grey GM(1,1) prediction model was used to predict the per capita EF, per capita EC, and EF of ten thousand yuan of GDP. Additionally, the spatial change characteristics of the sustainable development status of the study area in four time periods were analysed using GIS technology. The results showed the following. (1) In the 11-year study period, Qinghai Province’s EF per capita grew gradually, increasing from 2.3027 hm 2 in 2007 to 2.9837 hm 2 in 2017. (2) The EC per capita in Qinghai Province remained a slight linear upward trend. (3) The environmental sustainability in Qinghai Province deteriorated over time. (4) According to the spatial characteristics, the overall sustainable development state changed markedly in the eastern region but was stable in the central and western regions. This paper proposes some countermeasures and suggestions to help Qinghai Province work towards sustainable development, such as controlling the population, adjusting the industrial structure, developing a low-carbon circular economy, and implementing ecological engineering.

Suggested Citation

  • Jing Guo & Jun Ren & Xiaotao Huang & Guifang He & Yan Shi & Huakun Zhou, 2020. "The Dynamic Evolution of the Ecological Footprint and Ecological Capacity of Qinghai Province," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:3065-:d:344191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/3065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/3065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Wei & Wenlong Li & Yu Song & Jing Xu & Wenying Wang & Chenli Liu, 2019. "The Dynamic Analysis and Comparison of Emergy Ecological Footprint for the Qinghai–Tibet Plateau: A Case Study of Qinghai Province and Tibet," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    2. Gong Chen & Qi Li & Fei Peng & Hamed Karamian & Boyuan Tang, 2019. "Henan Ecological Security Evaluation Using Improved 3D Ecological Footprint Model Based on Emergy and Net Primary Productivity," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    3. McDonald, Garry W. & Patterson, Murray G., 2004. "Ecological Footprints and interdependencies of New Zealand regions," Ecological Economics, Elsevier, vol. 50(1-2), pages 49-67, September.
    4. Chen, Cheng-Zhong & Lin, Zhen-Shan, 2008. "Multiple timescale analysis and factor analysis of energy ecological footprint growth in China 1953-2006," Energy Policy, Elsevier, vol. 36(5), pages 1666-1678, May.
    5. Ya Wang & Lihua Zhou, 2016. "Assessment of the Coordination Ability of Sustainable Social-Ecological Systems Development Based on a Set Pair Analysis: A Case Study in Yanchi County, China," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
    6. Yening Wang & Yuantong Jiang & Yuanmao Zheng & Haowei Wang, 2019. "Assessing the Ecological Carrying Capacity Based on Revised Three-Dimensional Ecological Footprint Model in Inner Mongolia, China," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuhui Zhang & Fuquan Li & Yuke Zhou & Ziyuan Hu & Ruixin Zhang & Xiaoyu Xiang & Yali Zhang, 2022. "Using Net Primary Productivity to Characterize the Spatio-Temporal Dynamics of Ecological Footprint for a Resource-Based City, Panzhihua in China," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    2. Umberto Lucia & Debora Fino & Giulia Grisolia, 2022. "A thermoeconomic indicator for the sustainable development with social considerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2022-2036, February.
    3. Umberto Lucia & Giulia Grisolia, 2021. "The Gouy-Stodola Theorem—From Irreversibility to Sustainability—The Thermodynamic Human Development Index," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    4. Shiwen Zhang & Xiaoling Xie, 2022. "Exploration of Rural Agroforestry–Pastoral Complex Systems Based on Ecological Footprint*—Taking Zhagana in Yiwa Township as an Example," Sustainability, MDPI, vol. 14(21), pages 1-15, November.
    5. Marco Filippo Torchio & Umberto Lucia & Giulia Grisolia, 2020. "Economic and Human Features for Energy and Environmental Indicators: A Tool to Assess Countries’ Progress towards Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    6. Hua Liu & Dan-Yang Li & Rong Ma & Ming Ma, 2022. "Assessing the Ecological Risks Based on the Three-Dimensional Ecological Footprint Model in Gansu Province," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    7. Haier Ying & Suya Chen & Yuqin Mao, 2022. "Research on Marine Ecological Carrying Capacity of Ningbo City in China Based on System Dynamics," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    8. Huan Xu & Jianjun Yang & Guozhu Xia & Tao Lin, 2022. "Spatio-temporal Differentiation of Coupling Coordination between Ecological Footprint and Ecosystem Service Functions in the Aksu Region, Xinjiang, China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    9. Jiaxin Han & Enkhjargal Dalaibaatar, 2023. "A Study on the Influencing Factors of China’s Ecological Footprint Based on EEMD–GeoDetector," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    10. María Jesús Delgado-Rodríguez & Sonia de Lucas-Santos & Alfredo Cabezas-Ares, 2021. "Short-Run Links in Ecological Footprint: A Dynamic Factor Analysis for the EU," Land, MDPI, vol. 10(12), pages 1-12, December.
    11. Yu Hu & Tong Wu & Luo Guo & Shidong Zhang, 2023. "Spatiotemporal Relationships between Ecosystem Health and Urbanization on the Tibetan Plateau from a Coupling Coordination Perspective," Land, MDPI, vol. 12(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye-Ning Wang & Qiang Zhou & Hao-Wei Wang, 2020. "Assessing Ecological Carrying Capacity in the Guangdong-Hong Kong-Macao Greater Bay Area Based on a Three-Dimensional Ecological Footprint Model," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    2. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    3. Jiaxin Han & Enkhjargal Dalaibaatar, 2023. "A Study on the Influencing Factors of China’s Ecological Footprint Based on EEMD–GeoDetector," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    4. Zhigang Li & Jie Yang & Jialong Zhong & Dong Zhang, 2022. "Assessment of Urban Agglomeration Ecological Sustainability and Identification of Influencing Factors: Based on the 3DEF Model and the Random Forest," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    5. Szigeti, Cecília & Borzán, Anita, 2012. "Extreme outliers in the database for calculation of ecological footprint; the problems of grazing land footprint as well as the fishing ground footprint calculation," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 12(27), pages 1-8, September.
    6. Johann Audrain & Mateo Cordier & Sylvie Faucheux & Martin O’Connor, 2013. "Écologie territoriale et indicateurs pour un développement durable de la métropole parisienne," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(3), pages 523-559.
    7. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    8. Olivier, Michelle M. & Howard, Johnathon L. & Wilson, Ben P. & Robinson, Wayne A., 2018. "Correlating Localisation and Sustainability and Exploring the Causality of the Relationship," Ecological Economics, Elsevier, vol. 146(C), pages 749-765.
    9. Xi Yang & Xingwei Chen, 2021. "Using a combined evaluation method to assess water resources sustainable utilization in Fujian Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8047-8061, May.
    10. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Monica Flores-Garcia & Alfredo Mainar, 2009. "Environmental Effects of Production and Consumption Activities Within an Economy: the Aragon Case," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(4), pages 437-455, November.
    12. Marco Filippo Torchio & Umberto Lucia & Giulia Grisolia, 2020. "Economic and Human Features for Energy and Environmental Indicators: A Tool to Assess Countries’ Progress towards Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    13. Hua Liu & Dan-Yang Li & Rong Ma & Ming Ma, 2022. "Assessing the Ecological Risks Based on the Three-Dimensional Ecological Footprint Model in Gansu Province," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    14. Fuyuan Wang & Kaiyong Wang, 2017. "Assessing the Effect of Eco-City Practices on Urban Sustainability Using an Extended Ecological Footprint Model: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 9(9), pages 1-16, September.
    15. Garry Mcdonald, 2010. "A didactic Input-Output model for territorial ecology analyses," Working Papers hal-00911640, HAL.
    16. Xiaowei Yao & Zhanqi Wang & Hongwei Zhang, 2016. "Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    17. Fabio Grazi & Jeroen Bergh & Piet Rietveld, 2007. "Spatial welfare economics versus ecological footprint: modeling agglomeration, externalities and trade," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 135-153, September.
    18. Rui Meng & Lirong Zhang & Hongkuan Zang & Shichao Jin, 2021. "Evaluation of Environmental and Economic Integrated Benefits of Photovoltaic Poverty Alleviation Technology in the Sanjiangyuan Region of Qinghai Province," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    19. Debrupa Chakraborty & Joyashree Roy, 2015. "Ecological footprint of paperboard and paper production unit in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 909-921, August.
    20. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:3065-:d:344191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.