IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2402-d334329.html
   My bibliography  Save this article

Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields

Author

Listed:
  • Zaharaddeen Ali Hussaini

    (School of Water Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
    Centre for Renewable Energy Research, Bayero University, Kano 700241, Nigeria)

  • Peter King

    (School of Water Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK)

  • Chris Sansom

    (School of Water Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK)

Abstract

In power tower systems, the heliostat field is one of the essential subsystems in the plant due to its significant contribution to the plant’s overall power losses and total plant investment cost. The design and optimization of the heliostat field is hence an active area of research, with new field improvement processes and configurations being actively investigated. In this paper, a different configuration of a multi-tower field is explored. This involves adding an auxiliary tower to the field of a conventional power tower Concentrated Solar Power (CSP) system. The choice of the position of the auxiliary tower was based on the region in the field which has the least effective reflecting heliostats. The multi-tower configuration was initially applied to a 50 MWth conventional field in the case study region of Nigeria. The results from an optimized field show a marked increase in the annual thermal energy output and mean annual efficiency of the field. The biggest improvement in the optical efficiency loss factors be seen from the cosine, which records an improvement of 6.63%. Due to the size of the field, a minimal increment of 3020 MWht in the Levelized Cost of Heat (LCOH) was, however, recorded. In much larger fields, though, a higher number of weaker heliostats were witnessed in the field. The auxiliary tower in the field provides an alternate aim point for the weaker heliostat, thereby considerably cutting down on some optical losses, which in turn gives rise to higher energy output. At 400 MWth, the multi-tower field configuration provides a lower LCOH than the single conventional power tower field.

Suggested Citation

  • Zaharaddeen Ali Hussaini & Peter King & Chris Sansom, 2020. "Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2402-:d:334329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    2. Siala, F.M.F & Elayeb, M.E, 2001. "Mathematical formulation of a graphical method for a no-blocking heliostat field layout," Renewable Energy, Elsevier, vol. 23(1), pages 77-92.
    3. Piroozmand, Pasha & Boroushaki, Mehrdad, 2016. "A computational method for optimal design of the multi-tower heliostat field considering heliostats interactions," Energy, Elsevier, vol. 106(C), pages 240-252.
    4. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    5. Wei, Xiudong & Lu, Zhenwu & Wang, Zhifeng & Yu, Weixing & Zhang, Hongxing & Yao, Zhihao, 2010. "A new method for the design of the heliostat field layout for solar tower power plant," Renewable Energy, Elsevier, vol. 35(9), pages 1970-1975.
    6. Collado, Francisco J. & Guallar, Jesús, 2013. "A review of optimized design layouts for solar power tower plants with campo code," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 142-154.
    7. Collado, Francisco J. & Guallar, Jesús, 2012. "Campo: Generation of regular heliostat fields," Renewable Energy, Elsevier, vol. 46(C), pages 49-59.
    8. Besarati, Saeb M. & Yogi Goswami, D., 2014. "A computationally efficient method for the design of the heliostat field for solar power tower plant," Renewable Energy, Elsevier, vol. 69(C), pages 226-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ephraim Bonah Agyekum & Tomiwa Sunday Adebayo & Festus Victor Bekun & Nallapaneni Manoj Kumar & Manoj Kumar Panjwani, 2021. "Effect of Two Different Heat Transfer Fluids on the Performance of Solar Tower CSP by Comparing Recompression Supercritical CO 2 and Rankine Power Cycles, China," Energies, MDPI, vol. 14(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Qiyue & Guo, Ziqi & Liu, Daifei & Chen, Zhisheng & Shen, Zhongli & Wang, Xiaoli, 2021. "Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm," Renewable Energy, Elsevier, vol. 176(C), pages 447-458.
    2. Nicolás C. Cruz & José D. Álvarez & Juana L. Redondo & Jesús Fernández-Reche & Manuel Berenguel & Rafael Monterreal & Pilar M. Ortigosa, 2017. "A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization," Energies, MDPI, vol. 10(5), pages 1-17, May.
    3. Cruz, N.C. & Redondo, J.L. & Berenguel, M. & Álvarez, J.D. & Ortigosa, P.M., 2017. "Review of software for optical analyzing and optimizing heliostat fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1001-1018.
    4. Saghafifar, Mohammad & Gadalla, Mohamed & Mohammadi, Kasra, 2019. "Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH)," Renewable Energy, Elsevier, vol. 135(C), pages 920-935.
    5. Omar Behar & Daniel Sbarbaro & Luis Morán, 2020. "A Practical Methodology for the Design and Cost Estimation of Solar Tower Power Plants," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    6. Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
    7. Chao Li & Rongrong Zhai & Yongping Yang, 2017. "Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm," Energies, MDPI, vol. 10(11), pages 1-15, November.
    8. Wang, Jianxing & Guo, Lili & Zhang, Chengying & Song, Lei & Duan, Jiangyong & Duan, Liqiang, 2020. "Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method," Energy, Elsevier, vol. 208(C).
    9. Piroozmand, Pasha & Boroushaki, Mehrdad, 2016. "A computational method for optimal design of the multi-tower heliostat field considering heliostats interactions," Energy, Elsevier, vol. 106(C), pages 240-252.
    10. Wang, Shuang & Asselineau, Charles-Alexis & Fontalvo, Armando & Wang, Ye & Logie, William & Pye, John & Coventry, Joe, 2023. "Co-optimisation of the heliostat field and receiver for concentrated solar power plants," Applied Energy, Elsevier, vol. 348(C).
    11. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    12. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    13. Ortega, Guillermo & Rovira, Antonio, 2020. "A new method for the selection of candidates for shading and blocking in central receiver systems," Renewable Energy, Elsevier, vol. 152(C), pages 961-973.
    14. Rizvi, Arslan A. & Yang, Dong, 2022. "A detailed account of calculation of shading and blocking factor of a heliostat field," Renewable Energy, Elsevier, vol. 181(C), pages 292-303.
    15. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    16. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
    17. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.
    18. Zhang, Maolong & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout," Renewable Energy, Elsevier, vol. 87(P1), pages 720-730.
    19. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2402-:d:334329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.