IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1013-d314816.html
   My bibliography  Save this article

Analysis of the Insertion Angle of Lane-Changing Vehicles in Nearly Saturated Fast Road Segments

Author

Listed:
  • Quantao Yang

    (Department of Public Security and Traffic Management School, People’s Public Security University of China, Beijing 100038, China)

  • Feng Lu

    (Department of Public Security and Traffic Management School, People’s Public Security University of China, Beijing 100038, China)

  • Jingsheng Wang

    (Department of Public Security and Traffic Management School, People’s Public Security University of China, Beijing 100038, China)

  • Dan Zhao

    (Department of Public Security and Traffic Management School, People’s Public Security University of China, Beijing 100038, China)

  • Lijie Yu

    (Department of Traffic Engineering, Highway School, Chang’an University, Xi’an 710064, China)

Abstract

Vehicle lane changing in a nearly saturated fast road segment tends to increase the probability of traffic accidents in the road segment and reduce the speed of the rear vehicles in the target lane. To better analyze the relationship between the target vehicle and the front and rear vehicles in the target lane, this study focuses on the insertion angle of the target vehicle as the research object. Moreover, this study considers influencing factors, such as the longitudinal distance, transverse distance, and speed of the front and rear vehicles in the target lane. This study also adopts aerial photography to capture the flow of the main road of the Xi’an South Second Ring Road, Chang’an University segment. Information regarding the vehicle captured on video, including the speed, insertion angle, and coordinates, is extracted using the software Tracker. The coordinates correlation and speed correlation are analyzed using the software SPSS 2.0. K-means cluster analysis is applied to cluster the insertion angle of the target vehicle, and the insertion speed of the target vehicle. Of the total samples, 89.47% were inserted into the target lane at around 23° or below. The PC-Crash software was used to verify that the collision consequences gradually increased with the increase in collision angle. Therefore, when the insertion angle of the vehicle changes to lower than 23°, the overall road traffic condition is optimal, and no large losses are incurred.

Suggested Citation

  • Quantao Yang & Feng Lu & Jingsheng Wang & Dan Zhao & Lijie Yu, 2020. "Analysis of the Insertion Angle of Lane-Changing Vehicles in Nearly Saturated Fast Road Segments," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1013-:d:314816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    2. Denos C. Gazis, 1964. "Optimum Control of a System of Oversaturated Intersections," Operations Research, INFORMS, vol. 12(6), pages 815-831, December.
    3. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    4. Lijie Yu & Quan Chen & Kuanmin Chen, 2019. "Deviation of Peak Hours for Urban Rail Transit Stations: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Luo & Xiaodong Zang & Xu Cai & Huawei Gong & Jie Yuan & Junheng Yang, 2021. "Vehicle Lane-Changing Safety Pre-Warning Model under the Environment of the Vehicle Networking," Sustainability, MDPI, vol. 13(9), pages 1-16, May.
    2. Xu, Ting & Zhang, Zhishun & Wu, Xingqi & Qi, Long & Han, Yi, 2021. "Recognition of lane-changing behaviour with machine learning methods at freeway off-ramps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    2. Coifman, Benjamin, 2006. "Extracting More Information from the Existing Freeway Traffic Monitoring Infrastructure," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt34n479gz, Institute of Transportation Studies, UC Berkeley.
    3. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    4. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    5. Jin, Wen-Long, 2012. "The traffic statics problem in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1360-1373.
    6. Peikun Li & Chaoqun Ma & Jing Ning & Yun Wang & Caihua Zhu, 2019. "Analysis of Prediction Accuracy under the Selection of Optimum Time Granularity in Different Metro Stations," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    7. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    8. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    9. Zhu, Chenqiang & Zhong, Shiquan & Li, Guangyu & Ma, Shoufeng, 2017. "New control strategy for the lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 445-453.
    10. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    11. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    12. Piyapong Suwanno & Chaiwat Yaibok & Noriyasu Tsumita & Atsushi Fukuda & Kestsirin Theerathitichaipa & Manlika Seefong & Sajjakaj Jomnonkwao & Rattanaporn Kasemsri, 2023. "Estimation of the Evacuation Time According to Different Flood Depths," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    13. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    14. Bonsall, Peter & Liu, Ronghui & Young, William, 2005. "Modelling safety-related driving behaviour--impact of parameter values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 425-444, June.
    15. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
    16. Hiroshi Tatsumi & Masaya Kawano & Tetsunobu Yoshitake & Satoshi Toi & Yoshitaka Kajita, 2004. "Evaluation of City Planning Road Development Measures by Microscopic Traffic Simulation," ERSA conference papers ersa04p221, European Regional Science Association.
    17. Saif Eddin Jabari & Laura Wynter, 2016. "Sensor placement with time-to-detection guarantees," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 415-433, December.
    18. Jung, Jaeyoung & Chen, Rex & Jin, Wenlong & Jayakrishnan, R. & Regan, Amelia C, 2010. "An Empirical Study of Inter-Vehicle Communication Performance Using NS-2," University of California Transportation Center, Working Papers qt874253j6, University of California Transportation Center.
    19. Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
    20. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1013-:d:314816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.