IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9427-d444062.html
   My bibliography  Save this article

Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring

Author

Listed:
  • Martin Šlachta

    (Global Change Research Institute of the Czech Academy of Sciences, Lipová 1789/9, 370 05 České Budějovice, Czech Republic)

  • Tomáš Erban

    (Crop Research Institute, Drnovská 507/73, 161 06 Praha 6-Ruzyně, Czech Republic)

  • Alena Votavová

    (Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic)

  • Tomáš Bešta

    (Institute of Hydrobiology of the Czech Academy of Sciences, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic)

  • Michal Skalský

    (Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic)

  • Marta Václavíková

    (ALS Limited, ALS Czech Republic, Na Harfě 336/9, 190 00 Praha 9-Vysočany, Czech Republic)

  • Taťána Halešová

    (ALS Limited, ALS Czech Republic, Na Harfě 336/9, 190 00 Praha 9-Vysočany, Czech Republic)

  • Magda Edwards-Jonášová

    (Global Change Research Institute of the Czech Academy of Sciences, Lipová 1789/9, 370 05 České Budějovice, Czech Republic)

  • Renata Včeláková

    (Global Change Research Institute of the Czech Academy of Sciences, Lipová 1789/9, 370 05 České Budějovice, Czech Republic)

  • Pavel Cudlín

    (Global Change Research Institute of the Czech Academy of Sciences, Lipová 1789/9, 370 05 České Budějovice, Czech Republic)

Abstract

Domestic gardens supply pollinators with valuable habitats, but the risk of exposure to pesticides has been little investigated. Artificial nesting shelters of a red mason bee species ( Osmia bicornis ) were placed in two suburban gardens and two commercial fruit orchards to determine the contamination of forage sources by pesticides. Larval pollen provisions were collected from a total of 14 nests. They consisted mainly of pollen from oaks (65–100% weight/sample), Brassicaceae (≤34% w/s) and fruit trees (≤1.6% w/s). Overall, 30 pesticides were detected and each sample contained a mixture of 11–21 pesticide residues. The pesticide residues were significantly lower in garden samples than in orchard samples. The difference was attributed mainly to the abundant fungicides pyrimethanil and boscalid, which were sprayed in fruit orchards and were present on average at 1004 ppb and 648 ppb in orchard samples, respectively. The results suggested that pollinators can benefit from domestic gardens by foraging from floral sources less contaminated by pesticides than in adjacent croplands.

Suggested Citation

  • Martin Šlachta & Tomáš Erban & Alena Votavová & Tomáš Bešta & Michal Skalský & Marta Václavíková & Taťána Halešová & Magda Edwards-Jonášová & Renata Včeláková & Pavel Cudlín, 2020. "Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9427-:d:444062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth Y. Long & Christian H. Krupke, 2016. "Non-cultivated plants present a season-long route of pesticide exposure for honey bees," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    2. Kubi Ackerman & Michael Conard & Patricia Culligan & Richard Plunz & Maria-Paola Sutto & Leigh Whittinghill, 2014. "Sustainable Food Systems for Future Cities: The Potential of Urban Agriculture," The Economic and Social Review, Economic and Social Studies, vol. 45(2), pages 189-206.
    3. Victoria Schoen & Silvio Caputo & Chris Blythe, 2020. "Valuing Physical and Social Output: A Rapid Assessment of a London Community Garden," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    4. Monika Egerer & Jacob M. Cecala & Hamutahl Cohen, 2019. "Wild Bee Conservation within Urban Gardens and Nurseries: Effects of Local and Landscape Management," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    5. Gail Ann Langellotto & Andony Melathopoulos & Isabella Messer & Aaron Anderson & Nathan McClintock & Lucas Costner, 2018. "Garden Pollinators and the Potential for Ecosystem Service Flow to Urban and Peri-Urban Agriculture," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    6. Maj Rundlöf & Georg K. S. Andersson & Riccardo Bommarco & Ingemar Fries & Veronica Hederström & Lina Herbertsson & Ove Jonsson & Björn K. Klatt & Thorsten R. Pedersen & Johanna Yourstone & Henrik G. S, 2015. "Seed coating with a neonicotinoid insecticide negatively affects wild bees," Nature, Nature, vol. 521(7550), pages 77-80, May.
    7. Simon G. Potts & Vera Imperatriz-Fonseca & Hien T. Ngo & Marcelo A. Aizen & Jacobus C. Biesmeijer & Thomas D. Breeze & Lynn V. Dicks & Lucas A. Garibaldi & Rosemary Hill & Josef Settele & Adam J. Vanb, 2016. "Safeguarding pollinators and their values to human well-being," Nature, Nature, vol. 540(7632), pages 220-229, December.
    8. Gary D. Powney & Claire Carvell & Mike Edwards & Roger K. A. Morris & Helen E. Roy & Ben A. Woodcock & Nick J. B. Isaac, 2019. "Widespread losses of pollinating insects in Britain," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mário Santos & Helena Moreira & João Alexandre Cabral & Ronaldo Gabriel & Andreia Teixeira & Rita Bastos & Alfredo Aires, 2022. "Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay," IJERPH, MDPI, vol. 19(20), pages 1-26, October.
    2. Martina Artmann & Kathrin Specht & Jan Vávra & Marius Rommel, 2021. "Introduction to the Special Issue “A Systemic Perspective on Urban Food Supply: Assessing Different Types of Urban Agriculture”," Sustainability, MDPI, vol. 13(7), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blaydes, H. & Potts, S.G. & Whyatt, J.D. & Armstrong, A., 2021. "Opportunities to enhance pollinator biodiversity in solar parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Giulia Capotorti & Simone Valeri & Arianna Giannini & Valerio Minorenti & Mariagrazia Piarulli & Paolo Audisio, 2023. "On the Role of Natural and Induced Landscape Heterogeneity for the Support of Pollinators: A Green Infrastructure Perspective Applied in a Peri-Urban System," Land, MDPI, vol. 12(2), pages 1-29, January.
    3. Arianna Latini & Ilaria Papagni & Lorenzo Gatti & Patrizia De Rossi & Alessandro Campiotti & Germina Giagnacovo & Daniele Mirabile Gattia & Susanna Mariani, 2022. "Echium vulgare and Echium plantagineum : A Comparative Study to Evaluate Their Inclusion in Mediterranean Urban Green Roofs," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    4. Mollie Chapman & Susanna Klassen & Maayan Kreitzman & Adrian Semmelink & Kelly Sharp & Gerald Singh & Kai M. A. Chan, 2017. "5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems," Sustainability, MDPI, vol. 9(9), pages 1-30, September.
    5. Bin Han & Jiangli Wu & Qiaohong Wei & Fengying Liu & Lihong Cui & Olav Rueppell & Shufa Xu, 2024. "Life-history stage determines the diet of ectoparasitic mites on their honey bee hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Stefanie Christmann & Youssef Bencharki & Soukaina Anougmar & Pierre Rasmont & Moulay Chrif Smaili & Athanasios Tsivelikas & Aden Aw-Hassan, 2021. "Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture," Post-Print hal-03355596, HAL.
    7. Image, Mike & Gardner, Emma & Breeze, Tom D., 2023. "Co-benefits from tree planting in a typical English agricultural landscape: Comparing the relative effectiveness of hedgerows, agroforestry and woodland creation for improving crop pollination service," Land Use Policy, Elsevier, vol. 125(C).
    8. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    9. Centner, Terence J. & Brewer, Brady & Leal, Isaac, 2018. "Reducing damages from sulfoxaflor use through mitigation measures to increase the protection of pollinator species," Land Use Policy, Elsevier, vol. 75(C), pages 70-76.
    10. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    11. Lévesque, Ann & Kermagoret, Charlène & Poder, Thomas G. & L'Ecuyer-Sauvageau, Chloé & He, Jie & Sauvé, Sébastien & Dupras, Jérôme, 2021. "Financing on-farm ecosystem services in southern Quebec, Canada: A public call for pesticides reduction," Ecological Economics, Elsevier, vol. 184(C).
    12. Maëlle Tripon & Dorothée Boccanfuso & Marie-Eve Yergeau, 2020. "Agriculture urbaine, pratiques agricoles et impacts environnementaux et de santé publique," Cahiers de recherche 20-02, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    13. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Jordan Hristov & Yann Clough & Ullrika Sahlin & Henrik G. Smith & Martin Stjernman & Ola Olsson & Amanda Sahrbacher & Mark V. Brady, 2020. "Impacts of the EU's Common Agricultural Policy “Greening” Reform on Agricultural Development, Biodiversity, and Ecosystem Services," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(4), pages 716-738, December.
    15. Sarvenaz Pakravan & Shahin Keynoush & Ehsan Daneshyar, 2022. "Proposing a Pedagogical Framework for Integrating Urban Agriculture as a Tool to Achieve Social Sustainability within the Interior Design Studio," Sustainability, MDPI, vol. 14(12), pages 1-32, June.
    16. Tremlett, Constance J. & Peh, Kelvin S.-H. & Zamora-Gutierrez, Veronica & Schaafsma, Marije, 2021. "Value and benefit distribution of pollination services provided by bats in the production of cactus fruits in central Mexico," Ecosystem Services, Elsevier, vol. 47(C).
    17. Georgios Nakas & Konstantinos Kougioumoutzis & Theodora Petanidou, 2023. "Short- and Mid-Term Spatiotemporal Diversity Patterns of Post-Fire Insect-Pollinated Plant Communities in the Mediterranean," Land, MDPI, vol. 12(12), pages 1-13, November.
    18. Nicole Rogge & Insa Theesfeld & Carola Strassner, 2018. "Social Sustainability through Social Interaction—A National Survey on Community Gardens in Germany," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    19. Connor M. French & Laura D. Bertola & Ana C. Carnaval & Evan P. Economo & Jamie M. Kass & David J. Lohman & Katharine A. Marske & Rudolf Meier & Isaac Overcast & Andrew J. Rominger & Phillip P. A. Sta, 2023. "Global determinants of insect mitochondrial genetic diversity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Edward B. Barbier & Joanne C. Burgess, 2021. "Sustainable Use of the Environment, Planetary Boundaries and Market Power," Sustainability, MDPI, vol. 13(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9427-:d:444062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.