IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8648-d431059.html
   My bibliography  Save this article

Multiobjective Optimization of a Residential Grid-Tied Solar System

Author

Listed:
  • Warren S. Vaz

    (Department of Engineering Technology, University of Wisconsin-Oshkosh, Fox Cities Campus, Menasha, WI 54952, USA)

Abstract

Residential customers are increasingly turning to solar energy as they are becoming more climate-conscious and solar energy is becoming more cost-effective. However, customers are often faced with myriad choices from retailers. The current retail landscape features several solar panel sizes, battery storage sizes, and technologies, and all of them come in a range of prices. The present study aims to present a strategy to optimize the choice for the customer taking two conflicting objectives into account: minimizing the cost and minimizing the carbon footprint. By presenting multiple nondominated (optimal) solutions based on the individual’s unique parameters, customers can make the optimal choice. Two disparate locations are examined: New York City, NY, USA and Phoenix, AZ, USA. Several variations are examined, including no battery storage, battery storage, and charging of an electric vehicle. The strategy was found to suitably highlight a variety of options that gave the best tradeoff between carbon emissions and cost. Metrics to compare nondominated fronts showed that a variable season charging time for the electric vehicle produced fronts that dominated a fixed season strategy by 6%. This strategy can be easily implemented by customers to avoid choosing improperly sized and priced residential solar systems.

Suggested Citation

  • Warren S. Vaz, 2020. "Multiobjective Optimization of a Residential Grid-Tied Solar System," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8648-:d:431059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Luis Sampietro & Vicenç Puig & Ramon Costa-Castelló, 2019. "Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries," Energies, MDPI, vol. 12(5), pages 1-27, March.
    2. Rodrigo Martins & Holger C. Hesse & Johanna Jungbauer & Thomas Vorbuchner & Petr Musilek, 2018. "Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications," Energies, MDPI, vol. 11(8), pages 1-22, August.
    3. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    4. Kyuhyun Sim & Ram Vijayagopal & Namdoo Kim & Aymeric Rousseau, 2019. "Optimization of Component Sizing for a Fuel Cell-Powered Truck to Minimize Ownership Cost," Energies, MDPI, vol. 12(6), pages 1-13, March.
    5. Holger C. Hesse & Rodrigo Martins & Petr Musilek & Maik Naumann & Cong Nam Truong & Andreas Jossen, 2017. "Economic Optimization of Component Sizing for Residential Battery Storage Systems," Energies, MDPI, vol. 10(7), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kurdi, Yumna & Alkhatatbeh, Baraa J. & Asadi, Somayeh & Jebelli, Houtan, 2022. "A decision-making design framework for the integration of PV systems in the urban energy planning process," Renewable Energy, Elsevier, vol. 197(C), pages 288-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Farrokhabadi, 2019. "Data-Driven Mitigation of Energy Scheduling Inaccuracy in Renewable-Penetrated Grids: Summerside Electric Use Case," Energies, MDPI, vol. 12(12), pages 1-23, June.
    2. Kucevic, Daniel & Englberger, Stefan & Sharma, Anurag & Trivedi, Anupam & Tepe, Benedikt & Schachler, Birgit & Hesse, Holger & Srinivasan, Dipti & Jossen, Andreas, 2021. "Reducing grid peak load through the coordinated control of battery energy storage systems located at electric vehicle charging parks," Applied Energy, Elsevier, vol. 295(C).
    3. Dimitar Bozalakov & Mohannad J. Mnati & Joannes Laveyne & Jan Desmet & Lieven Vandevelde, 2019. "Battery Storage Integration in Voltage Unbalance and Overvoltage Mitigation Control Strategies and Its Impact on the Power Quality," Energies, MDPI, vol. 12(8), pages 1-26, April.
    4. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    5. Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
    6. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    7. Xu-Hui Li & Lin Huang & Qiang Li & Hu-Chen Liu, 2020. "Passenger Satisfaction Evaluation of Public Transportation Using Pythagorean Fuzzy MULTIMOORA Method under Large Group Environment," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    8. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    9. Shahriyar Nasirov & Paula Gonzalez & Jose Opazo & Carlos Silva, 2023. "Development of Rooftop Solar under Netbilling in Chile: Analysis of Main Barriers from Project Developers’ Perspectives," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    10. Ren, Danhong & Li, Xuan & Zhao, Xinhao & Liu, Baocheng & Yang, Zhengchun & He, Jie & Li, Tong & Pan, Peng, 2022. "Development and evaluation of Zn2+ ions hybrid supercapacitor based on ZnxMnO2-CNTs cathode," Applied Energy, Elsevier, vol. 324(C).
    11. Lange, Christopher & Rueß, Alexandra & Nuß, Andreas & Öchsner, Richard & März, Martin, 2020. "Dimensioning battery energy storage systems for peak shaving based on a real-time control algorithm," Applied Energy, Elsevier, vol. 280(C).
    12. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    13. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    14. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    15. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    16. Manfred Dollinger & Gerhard Fischerauer, 2023. "Physics-Based Prediction for the Consumption and Emissions of Passenger Vehicles and Light Trucks up to 2050," Energies, MDPI, vol. 16(8), pages 1-29, April.
    17. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2019. "A unified model to optimize configuration of battery energy storage systems with multiple types of batteries," Energy, Elsevier, vol. 176(C), pages 552-560.
    18. Nicola Blasuttigh & Simone Negri & Alessandro Massi Pavan & Enrico Tironi, 2023. "Optimal Sizing and Environ-Economic Analysis of PV-BESS Systems for Jointly Acting Renewable Self-Consumers," Energies, MDPI, vol. 16(3), pages 1-25, January.
    19. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    20. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8648-:d:431059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.