IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v324y2022ics0306261922010200.html
   My bibliography  Save this article

Development and evaluation of Zn2+ ions hybrid supercapacitor based on ZnxMnO2-CNTs cathode

Author

Listed:
  • Ren, Danhong
  • Li, Xuan
  • Zhao, Xinhao
  • Liu, Baocheng
  • Yang, Zhengchun
  • He, Jie
  • Li, Tong
  • Pan, Peng

Abstract

A hybrid supercapacitor exhibits excellent electrochemical properties due to its simultaneously high power and energy densities. However, the capacity under long hours will be greatly reduced. Therefore, this study develops a new type of Zn2+ ions hybrid supercapacitors (Zn-HSCs). The cathode of this device requires not only an ultra-high stability tunnel structure, but also high electrical conductivity. Thus, on the basis of the study of ZnxMnO2, an appropriate amount of carbon nanotubes (CNTs) was doped and a new material (i.e., ZnxMnO2-CNTs) is formed. Zn-HSCs are based on ZnxMnO2-CNTs as the cathode, activated carbon (ACC) as the anode, and an aqueous liquid electrolyte, which significantly improves the cycling performance of the device. In addition, the proposed ZnxMnO2-CNTs has a high electrical conductivity suitable for the development of rechargeable ZnxMnO2-CNTs //ACC Zn-HSCs devices.

Suggested Citation

  • Ren, Danhong & Li, Xuan & Zhao, Xinhao & Liu, Baocheng & Yang, Zhengchun & He, Jie & Li, Tong & Pan, Peng, 2022. "Development and evaluation of Zn2+ ions hybrid supercapacitor based on ZnxMnO2-CNTs cathode," Applied Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010200
    DOI: 10.1016/j.apenergy.2022.119730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922010200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wentian Gu & Gleb Yushin, 2014. "Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels,," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(5), pages 424-473, September.
    2. José Luis Sampietro & Vicenç Puig & Ramon Costa-Castelló, 2019. "Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries," Energies, MDPI, vol. 12(5), pages 1-27, March.
    3. Mauro Pasta & Colin D. Wessells & Robert A. Huggins & Yi Cui, 2012. "A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caizán-Juanarena, Leire & Sleutels, Tom & Borsje, Casper & ter Heijne, Annemiek, 2020. "Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems," Renewable Energy, Elsevier, vol. 157(C), pages 782-792.
    2. Manfred Dollinger & Gerhard Fischerauer, 2023. "Physics-Based Prediction for the Consumption and Emissions of Passenger Vehicles and Light Trucks up to 2050," Energies, MDPI, vol. 16(8), pages 1-29, April.
    3. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    4. Warren S. Vaz, 2020. "Multiobjective Optimization of a Residential Grid-Tied Solar System," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    5. Zhang, Tao & Li, Hong-Zhou & Xie, Bai-Chen, 2022. "Have renewables and market-oriented reforms constrained the technical efficiency improvement of China's electric grid utilities?," Energy Economics, Elsevier, vol. 114(C).
    6. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    7. Qi Dang & Wei Zhang & Jiqing Liu & Liting Wang & Deli Wu & Dejin Wang & Zhendong Lei & Liang Tang, 2023. "Bias-free driven ion assisted photoelectrochemical system for sustainable wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Xiao Zhu & Tuan K. A. Hoang & Pu Chen, 2017. "Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries," Energies, MDPI, vol. 10(11), pages 1-17, November.
    9. Hajra Khan & Imran Fareed Nizami & Saeed Mian Qaisar & Asad Waqar & Moez Krichen & Abdulaziz Turki Almaktoom, 2022. "Analyzing Optimal Battery Sizing in Microgrids Based on the Feature Selection and Machine Learning Approaches," Energies, MDPI, vol. 15(21), pages 1-22, October.
    10. Li, Yong & Yang, Jie & Song, Jian, 2016. "Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1250-1261.
    11. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Wen Zhu & Yuesheng Wang & Dongqiang Liu & Vincent Gariépy & Catherine Gagnon & Ashok Vijh & Michel L. Trudeau & Karim Zaghib, 2018. "Application of Operando X-ray Diffractometry in Various Aspects of the Investigations of Lithium/Sodium-Ion Batteries," Energies, MDPI, vol. 11(11), pages 1-41, November.
    13. Mamadou Baïlo Camara & Brayima Dakyo, 2023. "Coordinated Control of the Hybrid Electric Ship Power-Based Batteries/Supercapacitors/Variable Speed Diesel Generator," Energies, MDPI, vol. 16(18), pages 1-20, September.
    14. Ting Zhang & Shuaishuai Cao & Lingying Pan & Chenyu Zhou, 2020. "A Policy Effect Analysis of China’s Energy Storage Development Based on a Multi-Agent Evolutionary Game Model," Energies, MDPI, vol. 13(23), pages 1-35, November.
    15. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    17. Alessandro Serpi & Mario Porru, 2019. "Modelling and Design of Real-Time Energy Management Systems for Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 12(22), pages 1-21, November.
    18. Noah Lee & Chen Hon Nee & Seong Shan Yap & Kwong Keong Tham & Ah Heng You & Seong Ling Yap & Abdul Kariem Bin Mohd Arof, 2022. "Capacity Sizing of Embedded Control Battery–Supercapacitor Hybrid Energy Storage System," Energies, MDPI, vol. 15(10), pages 1-14, May.
    19. Li, Yong & Yang, Jie & Song, Jian, 2015. "Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1445-1461.
    20. Li, Yong & Yang, Jie & Song, Jian, 2017. "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 652-663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.