IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4708-d369186.html
   My bibliography  Save this article

Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings

Author

Listed:
  • Zhongjia Chen

    (School of Technology, Beijing Forestry University, Beijing 100083, China)

  • Hongmei Gu

    (Forest Service, Forest Products Laboratory, United States Department of Agriculture, Madison, WI 53726, USA)

  • Richard D. Bergman

    (Forest Service, Forest Products Laboratory, United States Department of Agriculture, Madison, WI 53726, USA)

  • Shaobo Liang

    (Forest Service, Forest Products Laboratory, United States Department of Agriculture, Madison, WI 53726, USA)

Abstract

Buildings consume large amounts of materials and energy, making them one of the highest environmental impactors. Quantifying the impact of building materials can be critical to developing an effective greenhouse gas mitigation strategy. Using Athena Impact Estimator for Buildings (IE4B), this paper compares cradle-to-grave life-cycle assessment (LCA) results for a 12-story building constructed from cross-laminated timber (CLT) and a functionally equivalent reinforced concrete (RC) building. Following EN 15978 framework, environmental impacts for stages A1–A5 (product to construction), B2, B4, and B6 (use), C1–C4 (end of life), and D (beyond the building life) were evaluated in detail along resource efficiency. For material resource efficiency, total mass of the CLT building was 33.2% less than the alternative RC building. For modules A to C and not considering operational energy use (B6), LCA results show a 20.6% reduction in embodied carbon achieved for the CLT building, compared to the RC building. For modules A to D and not considering B6, the embodied carbon assessment revealed that for the CLT building, 6.57 × 10 5 kg CO 2 eq was emitted, whereas for the equivalent RC building, 2.16 × 10 6 kg CO 2 eq was emitted, and emissions from CLT building was 70% lower than that from RC building. Additionally, 1.84 × 10 6 kg of CO 2 eq was stored in the wood material used in the CLT building during its lifetime. Building material selection should be considered for the urgent need to reduce global climate change impacts.

Suggested Citation

  • Zhongjia Chen & Hongmei Gu & Richard D. Bergman & Shaobo Liang, 2020. "Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4708-:d:369186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    2. Kamalakanta Sahoo & Richard Bergman & Sevda Alanya-Rosenbaum & Hongmei Gu & Shaobo Liang, 2019. "Life Cycle Assessment of Forest-Based Products: A Review," Sustainability, MDPI, vol. 11(17), pages 1-30, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roni Rinne & Hüseyin Emre Ilgın & Markku Karjalainen, 2022. "Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland," IJERPH, MDPI, vol. 19(2), pages 1-24, January.
    2. Bin Huang & Ke Xing & Rameez Rameezdeen, 2023. "Exploring Embodied Carbon Comparison in Lightweight Building Structure Frames: A Case Study," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    3. Franz Dolezal & Isabella Dornigg & Markus Wurm & Hildegund Figl, 2021. "Overview and Main Findings for the Austrian Case Study," Sustainability, MDPI, vol. 13(14), pages 1-12, July.
    4. Kevin Allan & Adam R. Phillips, 2021. "Comparative Cradle-to-Grave Life Cycle Assessment of Low and Mid-Rise Mass Timber Buildings with Equivalent Structural Steel Alternatives," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    5. Shaobo Liang & Hongmei Gu & Richard Bergman, 2021. "Environmental Life-Cycle Assessment and Life-Cycle Cost Analysis of a High-Rise Mass Timber Building: A Case Study in Pacific Northwestern United States," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    6. Insub Choi & JunHee Kim & DongWon Kim, 2020. "LCA-Based Investigation of Environmental Impacts for Novel Double-Beam Floor System Subjected to High Gravity Loads," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    7. Henriette Fischer & Martin Aichholzer & Azra Korjenic, 2023. "Ecological Potential of Building Components in Multi-Storey Residential Construction: A Comparative Case Study between an Existing Concrete and a Timber Building in Austria," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    8. Mahboobeh Hemmati & Tahar Messadi & Hongmei Gu, 2021. "Life Cycle Assessment of Cross-Laminated Timber Transportation from Three Origin Points," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    9. Alberto Bezama & Jakob Hildebrandt & Daniela Thrän, 2021. "Integrating Regionalized Socioeconomic Considerations onto Life Cycle Assessment for Evaluating Bioeconomy Value Chains: A Case Study on Hybrid Wood–Concrete Ceiling Elements," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    10. Markku Karjalainen & Hüseyin Emre Ilgın & Lauri Metsäranta & Markku Norvasuo, 2021. "Residents’ Attitudes towards Wooden Facade Renovation and Additional Floor Construction in Finland," IJERPH, MDPI, vol. 18(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muwei Xi & Dingqing Wang & Ye Xiang, 2023. "Fiscal Expenditure on Sports and Regional Carbon Emissions: Evidence from China," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    2. Xuyao Zhang & Weimin Zhang & Dayu Xu, 2020. "Life Cycle Assessment of Complex Forestry Enterprise: A Case Study of a Forest–Fiberboard Integrated Enterprise," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    3. Jianan Liu & Ni Dai & Yuan Sui & Asmatullah Yaqoubi, 2023. "A Study on the Impact of Fiscal Decentralization on Regional Green Development: A Perspective Based on the Emphasis on Sports," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    4. Vito Imbrenda & Rosa Coluzzi & Francesca Mariani & Bogdana Nosova & Eva Cudlinova & Rosanna Salvia & Giovanni Quaranta & Luca Salvati & Maria Lanfredi, 2023. "Working in (Slow) Progress: Socio-Environmental and Economic Dynamics in the Forestry Sector and the Contribution to Sustainable Development in Europe," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    5. Maria Lanfredi & Rosa Coluzzi & Vito Imbrenda & Bogdana Nosova & Massimiliano Giacalone & Rosario Turco & Marcela Prokopovà & Luca Salvati, 2023. "In-between Environmental Sustainability and Economic Viability: An Analysis of the State, Regulations, and Future of Italian Forestry Sector," Land, MDPI, vol. 12(5), pages 1-21, May.
    6. Wen Cao & Lin Yang & Qinyi Zhang & Lihua Chen & Weidong Wu, 2021. "Evaluation of Rural Dwellings’ Energy-Saving Retrofit with Adaptive Thermal Comfort Theory," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    7. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    8. Katsuyuki Nakano & Masahiko Karube & Nobuaki Hattori, 2020. "Environmental Impacts of Building Construction Using Cross-laminated Timber Panel Construction Method: A Case of the Research Building in Kyushu, Japan," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    9. Eskil Mattsson & Martin Erlandsson & Per Erik Karlsson & Hampus Holmström, 2022. "A Conceptual Landscape-Level Approach to Assess the Impacts of Forestry on Biodiversity," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    10. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Markku Karjalainen & Hüseyin Emre Ilgın & Lauri Metsäranta & Markku Norvasuo, 2021. "Residents’ Attitudes towards Wooden Facade Renovation and Additional Floor Construction in Finland," IJERPH, MDPI, vol. 18(23), pages 1-17, November.
    12. Roni Rinne & Hüseyin Emre Ilgın & Markku Karjalainen, 2022. "Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland," IJERPH, MDPI, vol. 19(2), pages 1-24, January.
    13. Iryna Zamula & Maryna Tanasiieva & Vitalii Travin & Vitalii Nitsenko & Tomas Balezentis & Dalia Streimikiene, 2020. "Assessment of the Profitability of Environmental Activities in Forestry," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    14. Mariana Hassegawa & Jo Van Brusselen & Mathias Cramm & Pieter Johannes Verkerk, 2022. "Wood-Based Products in the Circular Bioeconomy: Status and Opportunities towards Environmental Sustainability," Land, MDPI, vol. 11(12), pages 1-16, November.
    15. Shanshan Wang & Jiaxin Chen & Michael T. Ter‐Mikaelian & Annie Levasseur & Hongqiang Yang, 2022. "From carbon neutral to climate neutral: Dynamic life cycle assessment for wood‐based panels produced in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1437-1449, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4708-:d:369186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.