IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7584-d589855.html
   My bibliography  Save this article

Overview and Main Findings for the Austrian Case Study

Author

Listed:
  • Franz Dolezal

    (IBO—Austrian Institute for Building and Ecology, Alserbachstraße 5, 1090 Vienna, Austria)

  • Isabella Dornigg

    (IBO—Austrian Institute for Building and Ecology, Alserbachstraße 5, 1090 Vienna, Austria)

  • Markus Wurm

    (IBO—Austrian Institute for Building and Ecology, Alserbachstraße 5, 1090 Vienna, Austria)

  • Hildegund Figl

    (IBO—Austrian Institute for Building and Ecology, Alserbachstraße 5, 1090 Vienna, Austria)

Abstract

As part of a project investigating in the potential greenhouse gas mitigation effect of the increased use and production of mass timber worldwide, a comparative study was carried out to show the potential benefit of mass timber use in buildings in central Europe. After designing a mass timber building functionally equivalent to an existing conventional building, cradle to grave life cycle assessments (LCA) were calculated. The reference is an eight-story building with mixed use in Vienna, originally built in reinforced concrete. Global Warming Potential (GWP) is defined as the central parameter of interest. Calculated life cycle phases are A1–A3 (resource to production), A4 and A5 (transport to site and construction, respectively), B4 (replacement in the use phase), and C1–C4 (End of Life), as well as D (benefits and loads beyond the building life). It can be shown that the total mass of the timber building is 47% lower than of the concrete building. Considering life cycle phases A1 to A5, the timber building shows 18% less embodied carbon. Taking the whole building life cycle and the operational energy use (B6) into account, differences in GWP are much lower, as the heating system, though equipped with high efficiency and clean Austrian electricity grid mix, has much higher impact than the other phases.

Suggested Citation

  • Franz Dolezal & Isabella Dornigg & Markus Wurm & Hildegund Figl, 2021. "Overview and Main Findings for the Austrian Case Study," Sustainability, MDPI, vol. 13(14), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7584-:d:589855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhongjia Chen & Hongmei Gu & Richard D. Bergman & Shaobo Liang, 2020. "Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    2. Mahboobeh Hemmati & Tahar Messadi & Hongmei Gu, 2021. "Life Cycle Assessment of Cross-Laminated Timber Transportation from Three Origin Points," Sustainability, MDPI, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahboobeh Hemmati & Tahar Messadi & Hongmei Gu, 2021. "Life Cycle Assessment of Cross-Laminated Timber Transportation from Three Origin Points," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    2. Kevin Allan & Adam R. Phillips, 2021. "Comparative Cradle-to-Grave Life Cycle Assessment of Low and Mid-Rise Mass Timber Buildings with Equivalent Structural Steel Alternatives," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    3. Henriette Fischer & Martin Aichholzer & Azra Korjenic, 2023. "Ecological Potential of Building Components in Multi-Storey Residential Construction: A Comparative Case Study between an Existing Concrete and a Timber Building in Austria," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    4. Alberto Bezama & Jakob Hildebrandt & Daniela Thrän, 2021. "Integrating Regionalized Socioeconomic Considerations onto Life Cycle Assessment for Evaluating Bioeconomy Value Chains: A Case Study on Hybrid Wood–Concrete Ceiling Elements," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    5. Bin Huang & Ke Xing & Rameez Rameezdeen, 2023. "Exploring Embodied Carbon Comparison in Lightweight Building Structure Frames: A Case Study," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    6. Shaobo Liang & Hongmei Gu & Richard Bergman, 2021. "Environmental Life-Cycle Assessment and Life-Cycle Cost Analysis of a High-Rise Mass Timber Building: A Case Study in Pacific Northwestern United States," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    7. Markku Karjalainen & Hüseyin Emre Ilgın & Lauri Metsäranta & Markku Norvasuo, 2021. "Residents’ Attitudes towards Wooden Facade Renovation and Additional Floor Construction in Finland," IJERPH, MDPI, vol. 18(23), pages 1-17, November.
    8. Roni Rinne & Hüseyin Emre Ilgın & Markku Karjalainen, 2022. "Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland," IJERPH, MDPI, vol. 19(2), pages 1-24, January.
    9. Insub Choi & JunHee Kim & DongWon Kim, 2020. "LCA-Based Investigation of Environmental Impacts for Novel Double-Beam Floor System Subjected to High Gravity Loads," Sustainability, MDPI, vol. 12(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7584-:d:589855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.