IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1097-d207359.html
   My bibliography  Save this article

A Pick-Up Points Recommendation System for Ridesourcing Service

Author

Listed:
  • Wanqiu Zhu

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
    School of Transportation, Southeast University, Nanjing 210096, China)

  • Jian Lu

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
    School of Transportation, Southeast University, Nanjing 210096, China)

  • Yunxuan Li

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
    School of Transportation, Southeast University, Nanjing 210096, China)

  • Yi Yang

    (Didi Chuxing Company, Beijing 100000, China)

Abstract

In the ridesourcing industry, drivers are often unable to quickly and accurately locate the waiting position of riders, but patrol or wait on the road, which will seriously affect the management of the road traffic order. It may be a good idea to provide an online virtual site for the taxi to facilitate convergence of the rider and driver. The concept of recommended pick-up point is presented in this paper. At present, ridesourcing service platforms on the market have similar functions, but they do not take into account whether the setting of the pick-up point is compatible with the actual traffic environment, resulting in some problems. We have invented a method to select the recommended pick-up point by integrating various traffic influencing factors, so as to ensure that the setting of the pick-up point is compatible with the actual traffic situation, which consists of three steps. Firstly, we studied the rider’s maximum tolerable waiting time and defined an attractive walking range for riders based on the huge amount of data. In the second step, we analyzed spatial distribution characteristics of the taxi demand hotspot and determined candidate pick-up locations. Lastly, the fuzzy analytic hierarchy method was used to select the recommended pick-up point that is most conducive to traffic management from multiple candidate points. A case study was conducted to validate the proposed approach and experimental evidence showed that recommended results based on the approach are in line with the actual situation of the road, and conducive to road traffic management. This recommendation method is based on real ridesourcing orders data.

Suggested Citation

  • Wanqiu Zhu & Jian Lu & Yunxuan Li & Yi Yang, 2019. "A Pick-Up Points Recommendation System for Ridesourcing Service," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1097-:d:207359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    2. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiling Han & Yanyan Chen & Hui Li & Kuanshuang Zhang & Jiyang Sun, 2019. "Customized Bus Network Design Based on Individual Reservation Demands," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    2. Aleksander Król & Małgorzata Król, 2019. "A Stochastic Simulation Model for the Optimization of the Taxi Management System," Sustainability, MDPI, vol. 11(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    2. Caprioli, Caterina & Bottero, Marta, 2021. "Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures," Land Use Policy, Elsevier, vol. 102(C).
    3. Klaus D. Goepel, 2019. "Comparison of Judgment Scales of the Analytical Hierarchy Process — A New Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 445-463, March.
    4. Kaixuan Liu & Jiayu Zhao & Chun Zhu, 2022. "Research on Digital Restoration of Plain Unlined Silk Gauze Gown of Mawangdui Han Dynasty Tomb Based on AHP and Human–Computer Interaction Technology," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    5. Kaya, İhsan, 2012. "Evaluation of outsourcing alternatives under fuzzy environment for waste management," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 107-118.
    6. Mukund Pratap Singh & Pitam Singh & Priyamvada Singh, 2019. "Fuzzy AHP-based multi-criteria decision-making analysis for route alignment planning using geographic information system (GIS)," Journal of Geographical Systems, Springer, vol. 21(3), pages 395-432, September.
    7. Jahanifar, Komeil & Amirnejad, Hamid & Azadi, Hossein & Adenle, Ademola A. & Scheffran, Jürgen, 2019. "Economic analysis of land use changes in forests and rangelands: Developing conservation strategies," Land Use Policy, Elsevier, vol. 88(C).
    8. D. Bajić & D. Polomčić & J. Ratković, 2017. "Multi-Criteria Decision Analysis for the Purposes of Groundwater Control System Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4759-4784, December.
    9. Miodrag Čelebić & Dragoljub Bajić & Sanja Bajić & Mirjana Banković & Duško Torbica & Aleksej Milošević & Dejan Stevanović, 2024. "Development of an Integrated Model for Open-Pit-Mine Discontinuous Haulage System Optimization," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    10. Panagiotis K. Marhavilas & Michael G. Tegas & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A Joint Stochastic/Deterministic Process with Multi-Objective Decision Making Risk-Assessment Framework for Sustainable Constructions Engineering Projects—A Case Study," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    11. Vecihi Yiğit & Nazlı Nisa Demir & Hisham Alidrisi & Mehmet Emin Aydin, 2020. "Elicitation of the Factors Affecting Electricity Distribution Efficiency Using the Fuzzy AHP Method," Mathematics, MDPI, vol. 9(1), pages 1-25, December.
    12. Shang, Delei & Yin, Guangzhi & Li, Xiaoshuang & Li, Yaoji & Jiang, Changbao & Kang, Xiangtao & Liu, Chao & Zhang, Chi, 2015. "Analysis for Green Mine (phosphate) performance of China: An evaluation index system," Resources Policy, Elsevier, vol. 46(P2), pages 71-84.
    13. PrasannaVenkatesan, S. & Goh, M., 2016. "Multi-objective supplier selection and order allocation under disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 124-142.
    14. Warunvit Auttha & Pongrid Klungboonkrong, 2023. "Evaluation of the Transport Environmental Effects of an Urban Road Network in a Medium-Sized City in a Developing Country," Sustainability, MDPI, vol. 15(24), pages 1-35, December.
    15. Pasura Aungkulanon & Walailak Atthirawong & Pongchanun Luangpaiboon, 2023. "Fuzzy Analytical Hierarchy Process for Strategic Decision Making in Electric Vehicle Adoption," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    16. Nicola Bellantuono & Pierpaolo Pontrandolfo & Barbara Scozzi, 2016. "Capturing the Stakeholders’ View in Sustainability Reporting: A Novel Approach," Sustainability, MDPI, vol. 8(4), pages 1-12, April.
    17. Vicente Rodríguez Montequín & Joaquín Manuel Villanueva Balsera & Marina Díaz Piloñeta & César Álvarez Pérez, 2020. "A Bradley-Terry Model-Based Approach to Prioritize the Balance Scorecard Driving Factors: The Case Study of a Financial Software Factory," Mathematics, MDPI, vol. 8(2), pages 1-15, February.
    18. Badreya Gharib Khamis Mohammed Alblooshi & Syed Zamberi Ahmad & Matloub Hussain & Sanjay Kumar Singh, 2022. "Sustainable management of electronic waste: Empirical evidences from a stakeholders' perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1856-1874, May.
    19. Muhammad Mohsin & Yin Hengbin & Zhang Luyao & Li Rui & Qian Chong & Ana Mehak, 2022. "An Application of Multiple-Criteria Decision Analysis for Risk Prioritization and Management: A Case Study of the Fisheries Sector in Pakistan," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    20. Nyimbili, Penjani Hopkins & Erden, Turan, 2020. "GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in Istanbul, Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1097-:d:207359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.