IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6845-d293112.html
   My bibliography  Save this article

Composting of Vegetable Waste Using Microbial Consortium and Biocontrol Efficacy of Streptomyces Sp. Al-Dhabi 30 Isolated from the Saudi Arabian Environment for Sustainable Agriculture

Author

Listed:
  • Naif Abdullah Al-Dhabi

    (Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Galal Ali Esmail

    (Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Abdul-Kareem Mohammed Ghilan

    (Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Mariadhas Valan Arasu

    (Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

Abstract

Thirty-seven root-associated Actinomycetes were isolated from the tomato plant for plant growth promoting activity. Among these, ten were selected for phosphate solubilisation, the production of siderophores, and indole acetic acid. Out of ten, eight Actinomycetes solubilised phosphate, whereas, Streptomyces sp. Al-Dhabi 30 showed better activity (43.1 mg/dL). Actinomycetes produced siderophore and the concentration ranged between 1.6 and 42.1 μg/mL. Streptomyces sp. Al-Dhabi 30 showed the ability to produce a maximum amount of indole acetic acid (IAA) (43 μg/mL), chitinase (43.1 U/mL), cellulase (67 U/mL), and protease (121 U/mL) than other strains. Further, vegetable waste was used as the bulk material for composting using Streptomyces sp. Al-Dhabi 30 along with microbial consortium. Total nitrogen content was 3.8% in Streptomyces sp. Al-Dhabi 30 inoculated compost, whereas 2.7% organic nitrogen was detected in the control. In the compost vegetable waste, the C:N ratio was 10.07, whereas it was 17.51 in the control. The vegetable waste composted with Streptomyces sp. Al-Dhabi 30, Lactobacillus plantarum ATCC 33222, and Candidautilis ATCC 9950 showed antagonistic activity and the supplemented compost enhanced shoot, root height, and total weightin tomato plants. These findings clearly suggest the use of Streptomyces sp. Al-Dhabi 30 as a potential biocontrol agent.

Suggested Citation

  • Naif Abdullah Al-Dhabi & Galal Ali Esmail & Abdul-Kareem Mohammed Ghilan & Mariadhas Valan Arasu, 2019. "Composting of Vegetable Waste Using Microbial Consortium and Biocontrol Efficacy of Streptomyces Sp. Al-Dhabi 30 Isolated from the Saudi Arabian Environment for Sustainable Agriculture," Sustainability, MDPI, vol. 11(23), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6845-:d:293112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
    2. Zhou, Hui & Meng, AiHong & Long, YanQiu & Li, QingHai & Zhang, YanGuo, 2014. "An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 107-122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naif Abdullah Al-Dhabi & Galal Ali Esmail & Mariadhas Valan Arasu, 2020. "Co-Fermentation of Food Waste and Municipal Sludge from the Saudi Arabian Environment to Improve Lactic Acid Production by Lactobacillus rhamnosus AW3 Isolated from Date Processing Waste," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    2. Fuad Ameen & Ali A. Al-Homaidan, 2020. "Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants," Sustainability, MDPI, vol. 13(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Clercq, Djavan & Wen, Zongguo & Gottfried, Oliver & Schmidt, Franziska & Fei, Fan, 2017. "A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 204-221.
    2. Roozbeh Feiz & Jonas Ammenberg & Annika Björn & Yufang Guo & Magnus Karlsson & Yonghui Liu & Yuxian Liu & Laura Shizue Moriga Masuda & Alex Enrich-Prast & Harald Rohracher & Kristina Trygg & Sepehr Sh, 2019. "Biogas Potential for Improved Sustainability in Guangzhou, China—A Study Focusing on Food Waste on Xiaoguwei Island," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    3. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    4. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    6. De Clercq, Djavan & Wen, Zongguo & Fei, Fan, 2017. "Economic performance evaluation of bio-waste treatment technology at the facility level," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 178-184.
    7. Zhou, Hewen & Yang, Qing & Gul, Eid & Shi, Mengmeng & Li, Jiashuo & Yang, Minjiao & Yang, Haiping & Chen, Bin & Zhao, Haibo & Yan, Yunjun & Erdoğan, Güneş & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis," Renewable Energy, Elsevier, vol. 176(C), pages 565-578.
    8. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.
    9. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Weiguo Dong & Zhiwen Chen & Jiacong Chen & Zhao Jia Ting & Rui Zhang & Guozhao Ji & Ming Zhao, 2022. "A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes," Energies, MDPI, vol. 15(7), pages 1-14, April.
    11. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Noushabadi, Abolfazl Sajadi & Dashti, Amir & Ahmadijokani, Farhad & Hu, Jinguang & Mohammadi, Amir H., 2021. "Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation," Renewable Energy, Elsevier, vol. 179(C), pages 550-562.
    13. Liu, Yili & Xing, Peixuan & Liu, Jianguo, 2017. "Environmental performance evaluation of different municipal solid waste management scenarios in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 98-106.
    14. Chen, Wei & Geng, Yong & Hong, Jinglan & Kua, Harn Wei & Xu, Changqing & Yu, Nan, 2017. "Life cycle assessment of antibiotic mycelial residues management in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 830-838.
    15. Haili Liu & Xu Zhang & Qingchao Hong, 2021. "Emission Characteristics of Pollution Gases from the Combustion of Food Waste," Energies, MDPI, vol. 14(19), pages 1-11, October.
    16. Fang, Shiwen & Lin, Yousheng & Lin, Yan & Chen, Shu & Shen, Xiangyang & Zhong, Tianming & Ding, Lixing & Ma, Xiaoqian, 2020. "Influence of ultrasonic pretreatment on the co-pyrolysis characteristics and kinetic parameters of municipal solid waste and paper mill sludge," Energy, Elsevier, vol. 190(C).
    17. Wang, Ping & Wang, Jinman & Qin, Qian & Wang, Hongdan, 2017. "Life cycle assessment of magnetized fly-ash compound fertilizer production: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 706-713.
    18. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    19. Dashti, Amir & Noushabadi, Abolfazl Sajadi & Asadi, Javad & Raji, Mojtaba & Chofreh, Abdoulmohammad Gholamzadeh & Klemeš, Jiří Jaromír & Mohammadi, Amir H., 2021. "Review of higher heating value of municipal solid waste based on analysis and smart modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6845-:d:293112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.