IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6509-d288392.html
   My bibliography  Save this article

Study on Environment Regulation of Residential in Severe Cold Area of China in Winter: Base on Outdoor Thermal Comfort of the Elderly

Author

Listed:
  • Hong Jin

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150000, China)

  • Bo Wang

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150000, China)

  • Bingbing Han

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150000, China)

Abstract

Overwhelming evidence shows that the harsh climate conditions are affecting urban residents who are living in severe cold areas of China in winter, particularly affecting the frequency and length of outdoor space usage of the elderly. This study aims (1) to establish the modified model which is suitable for the harsh climate region, (2) to verify whether the physiological equivalent temperature (PET) index can be evaluated for the outdoor thermal comfort of older adults in severe cold areas of China in winter, (3) to draw the thermal comfort map that is based on the former conclusions. In this study, the outdoor environments in typical residential areas for the elderly of Changchun, China, has been investigated by using field measurement, questionnaire survey, and Computational Fluid Dynamics (CFD) simulation. The results show that the wind direction is the important aspects of model modification and quite possibly one of the most neglected. In addition, it is convenient to evaluate outdoor thermal comfort of the elderly on the basis of the PET index and the neutral PET temperature of elderly people who live in severe cold areas of China in winter is −0.5 degrees Celsius. According to the thermal comfort map, the park green land of urban residential is the best area for the elderly.

Suggested Citation

  • Hong Jin & Bo Wang & Bingbing Han, 2019. "Study on Environment Regulation of Residential in Severe Cold Area of China in Winter: Base on Outdoor Thermal Comfort of the Elderly," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6509-:d:288392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouldboukhitine, Salah-Eddine & Belarbi, Rafik & Sailor, David J., 2014. "Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings," Applied Energy, Elsevier, vol. 114(C), pages 273-282.
    2. Rosso, Federica & Golasi, Iacopo & Castaldo, Veronica Lucia & Piselli, Cristina & Pisello, Anna Laura & Salata, Ferdinando & Ferrero, Marco & Cotana, Franco & de Lieto Vollaro, Andrea, 2018. "On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons," Renewable Energy, Elsevier, vol. 118(C), pages 825-839.
    3. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Leng & Bingbing Han, 2022. "Effect of Environmental Planning on Elderly Individual Quality of Life in Severe Cold Regions: A Case Study in Northeastern China," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    2. Riyi Li & Yufeng Zhang & Yumeng Cui, 2023. "Assessment of Outdoor Pedestrian Ventilation Performance While Controlling Building Array Scale and Density," Sustainability, MDPI, vol. 15(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    4. Allen-Dumas, Melissa R. & Rose, Amy N. & New, Joshua R. & Omitaomu, Olufemi A. & Yuan, Jiangye & Branstetter, Marcia L. & Sylvester, Linda M. & Seals, Matthew B. & Carvalhaes, Thomaz M. & Adams, Mark , 2020. "Impacts of the morphology of new neighborhoods on microclimate and building energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Mehdi Makvandi & Baofeng Li & Mohamed Elsadek & Zeinab Khodabakhshi & Mohsen Ahmadi, 2019. "The Interactive Impact of Building Diversity on the Thermal Balance and Micro-Climate Change under the Influence of Rapid Urbanization," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    6. Yunfang Jiang & Danran Song & Tiemao Shi & Xuemei Han, 2018. "Adaptive Analysis of Green Space Network Planning for the Cooling Effect of Residential Blocks in Summer: A Case Study in Shanghai," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    7. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    8. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    9. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    10. Giuseppe Frustaci & Samantha Pilati & Cristina Lavecchia & Enea Marco Montoli, 2022. "High-Resolution Gridded Air Temperature Data for the Urban Environment: The Milan Data Set," Forecasting, MDPI, vol. 4(1), pages 1-24, February.
    11. Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
    12. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    13. Fatima Zahra Ben Ratmia & Atef Ahriz & Giovanni Santi & Soumia Bouzaher & Waqas Ahmed Mahar & Mohamed Akram Eddine Ben Ratmia & Mohamed Elhadi Matallah, 2023. "Street Design Strategies Based on Spatial Configurations and Building External Envelopes in Relation to Outdoor Thermal Comfort in Arid Climates," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    14. Giulio Vita & Syeda Anam Hashmi & Simone Salvadori & Hassan Hemida & Charalampos Baniotopoulos, 2020. "Role of Inflow Turbulence and Surrounding Buildings on Large Eddy Simulations of Urban Wind Energy," Energies, MDPI, vol. 13(19), pages 1-22, October.
    15. Miguel Núñez-Peiró & Anna Mavrogianni & Phil Symonds & Carmen Sánchez-Guevara Sánchez & F. Javier Neila González, 2021. "Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of Madrid," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    16. Hao, Tongping & Zhao, Qunshan & Huang, Jianxiang, 2022. "Optimization of Tree Locations to Reduce Human Heat Stress in an Urban Park," OSF Preprints t7ukq, Center for Open Science.
    17. Mansoureh Gholami & Alberto Barbaresi & Patrizia Tassinari & Marco Bovo & Daniele Torreggiani, 2020. "A Comparison of Energy and Thermal Performance of Rooftop Greenhouses and Green Roofs in Mediterranean Climate: A Hygrothermal Assessment in WUFI," Energies, MDPI, vol. 13(8), pages 1-15, April.
    18. Dongwoo Lee & Kyushik Oh, 2019. "Developing the Urban Thermal Environment Management and Planning (UTEMP) System to Support Urban Planning and Design," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    19. Tang, Mingfang & Zheng, Xing, 2019. "Experimental study of the thermal performance of an extensive green roof on sunny summer days," Applied Energy, Elsevier, vol. 242(C), pages 1010-1021.
    20. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6509-:d:288392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.