Classifying Street Spaces with Street View Images for a Spatial Indicator of Urban Functions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018.
"Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life,"
Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," NBER Working Papers 21778, National Bureau of Economic Research, Inc.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," Harvard Business School Working Papers 16-065, Harvard Business School.
- Glaeser, Edward L. & Kominers, Scott Duke & Luca, Michael & Naik, Nikhil, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures for Urban Life," Working Paper Series 15-075, Harvard University, John F. Kennedy School of Government.
- Philip Salesses & Katja Schechtner & César A Hidalgo, 2013. "The Collaborative Image of The City: Mapping the Inequality of Urban Perception," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
- Yu Ye & Hanting Xie & Jia Fang & Hetao Jiang & De Wang, 2019. "Daily Accessed Street Greenery and Housing Price: Measuring Economic Performance of Human-Scale Streetscapes via New Urban Data," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Changcheng Kan & Qiwei Ma & Zhaoya Gong & Yuanjing Qi & Anrong Dang, 2022. "The Recovery of China’s Industrial Parks in the First Wave of COVID-19," IJERPH, MDPI, vol. 19(22), pages 1-15, November.
- Junyue Yang & Xiaomei Li & Jia Du & Canhui Cheng, 2023. "Exploring the Relationship between Urban Street Spatial Patterns and Street Vitality: A Case Study of Guiyang, China," IJERPH, MDPI, vol. 20(2), pages 1-15, January.
- Jonathan Stiles & Yuchen Li & Harvey J Miller, 2022. "How does street space influence crash frequency? An analysis using segmented street view imagery," Environment and Planning B, , vol. 49(9), pages 2467-2483, November.
- Jiyun Lee & Donghyun Kim & Jina Park, 2022. "A Machine Learning and Computer Vision Study of the Environmental Characteristics of Streetscapes That Affect Pedestrian Satisfaction," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
- Yunzi Yang & Yuanyuan Ma & Hongzan Jiao, 2021. "Exploring the Correlation between Block Vitality and Block Environment Based on Multisource Big Data: Taking Wuhan City as an Example," Land, MDPI, vol. 10(9), pages 1-23, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Galdo, Virgilio & Li, Yue & Rama, Martin, 2021.
"Identifying urban areas by combining human judgment and machine learning: An application to India,"
Journal of Urban Economics, Elsevier, vol. 125(C).
- Galdo,Virgilio & Li,Yue-000316086 & Rama,Martin G., 2020. "Identifying Urban Areas by Combining Human Judgment and Machine Learning : An Application to India," Policy Research Working Paper Series 0160, The World Bank.
- Qiwei Song & Yifeng Liu & Waishan Qiu & Ruijun Liu & Meikang Li, 2022. "Investigating the Impact of Perceived Micro-Level Neighborhood Characteristics on Housing Prices in Shanghai," Land, MDPI, vol. 11(11), pages 1-21, November.
- Nikhil Naik & Ramesh Raskar & César A. Hidalgo, 2016. "Cities Are Physical Too: Using Computer Vision to Measure the Quality and Impact of Urban Appearance," American Economic Review, American Economic Association, vol. 106(5), pages 128-132, May.
- Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
- Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018.
"Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life,"
Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," NBER Working Papers 21778, National Bureau of Economic Research, Inc.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," Harvard Business School Working Papers 16-065, Harvard Business School.
- Glaeser, Edward L. & Kominers, Scott Duke & Luca, Michael & Naik, Nikhil, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures for Urban Life," Working Paper Series 15-075, Harvard University, John F. Kennedy School of Government.
- Been, Vicki & Ellen, Ingrid Gould & Gedal, Michael & Glaeser, Edward & McCabe, Brian J., 2016. "Preserving history or restricting development? The heterogeneous effects of historic districts on local housing markets in New York City," Journal of Urban Economics, Elsevier, vol. 92(C), pages 16-30.
- Yiyang Fan & Hao Zou & Tianyi Zhao & Boqing Fan & Yuning Cheng, 2025. "Typological Mapping of Urban Landscape Spatial Characteristics from the Perspective of Morphometrics," Land, MDPI, vol. 14(9), pages 1-26, September.
- Hao Wu & Hongzan Jiao & Yang Yu & Zhigang Li & Zhenghong Peng & Lingbo Liu & Zheng Zeng, 2018. "Influence Factors and Regression Model of Urban Housing Prices Based on Internet Open Access Data," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
- Obschonka, Martin & Lee, Neil & Rodríguez-Pose, Andrés & Eichstaedt, johannes Christopher & Ebert, Tobias, 2018.
"Big Data, artificial intelligence and the geography of entrepreneurship in the United States,"
OSF Preprints
c62tn, Center for Open Science.
- RodrÃguez-Pose, Andrés & Obschonka, Martin & Lee, Neil & Eichstaedt , Johannes & Ebert, Tobias, 2018. "Big Data, artificial intelligence and the geography of entrepreneurship in the United States," CEPR Discussion Papers 12949, C.E.P.R. Discussion Papers.
- Werner Liebregts & Pourya Darnihamedani & Eric Postma & Martin Atzmueller, 2020. "The promise of social signal processing for research on decision-making in entrepreneurial contexts," Small Business Economics, Springer, vol. 55(3), pages 589-605, October.
- Jinwon Kim & Jucheol Moon, 2022. "Congestion Costs and Scheduling Preferences of Car Commuters in California: Estimates Using Big Data," Working Papers 2201, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
- Panle Jia Barwick & Yanyan Liu & Eleonora Patacchini & Qi Wu, 2023.
"Information, Mobile Communication, and Referral Effects,"
American Economic Review, American Economic Association, vol. 113(5), pages 1170-1207, May.
- Patacchini, Eleonora & Barwick, Panle Jia & Liu, Yanyan & Wu, Qi, 2019. "Information, Mobile Communication, and Referral Effects," CEPR Discussion Papers 13786, C.E.P.R. Discussion Papers.
- Panle Jia Barwick & Yanyan Liu & Eleonora Patacchini & Qi Wu, 2019. "Information, Mobile Communication, and Referral Effects," NBER Working Papers 25873, National Bureau of Economic Research, Inc.
- Dario Sansone & Anna Zhu, 2023.
"Using Machine Learning to Create an Early Warning System for Welfare Recipients,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
- Dario Sansone & Anna Zhu, 2020. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Papers 2011.12057, arXiv.org, revised May 2021.
- Sansone, Dario & Zhu, Anna, 2021. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," IZA Discussion Papers 14377, Institute of Labor Economics (IZA).
- Prithwiraj Choudhury & Dan Wang & Natalie A. Carlson & Tarun Khanna, 2019. "Machine learning approaches to facial and text analysis: Discovering CEO oral communication styles," Strategic Management Journal, Wiley Blackwell, vol. 40(11), pages 1705-1732, November.
- Cem Çağrı Dönmez & Abdulkadir Atalan, 2019. "Developing Statistical Optimization Models for Urban Competitiveness Index: Under the Boundaries of Econophysics Approach," Complexity, Hindawi, vol. 2019, pages 1-11, November.
- Remi Jedwab & Prakash Loungani & Anthony Yezer, 2019.
"How Should We Measure City Size? Theory and Evidence Within and Across Rich and Poor Countries,"
Working Papers
2019-11, The George Washington University, Institute for International Economic Policy.
- Remi Jedwab & Mr. Prakash Loungani & Anthony Yezer, 2019. "How Should We Measure City Size? Theory and Evidence Within and Across Rich and Poor Countries," IMF Working Papers 2019/203, International Monetary Fund.
- Steven C Bourassa & Martin Hoesli & Louis Merlin & John Renne, 2021. "Big data, accessibility and urban house prices," Urban Studies, Urban Studies Journal Limited, vol. 58(15), pages 3176-3195, November.
- Seung Jin Cho & Jun Yeong Lee & John V. Winters, 2021.
"Employment impacts of the COVID‐19 pandemic across metropolitan status and size,"
Growth and Change, Wiley Blackwell, vol. 52(4), pages 1958-1996, December.
- Cho, Seung Jin & Lee, Jun Yeong & Winters, John, 2020. "Employment Impacts of the COVID-19 Pandemic across Metropolitan Status and Size," ISU General Staff Papers 202007070700001109, Iowa State University, Department of Economics.
- Cho, Seung Jin & Lee, Jun Yeong & Winters, John V., 2020. "Employment Impacts of the COVID-19 Pandemic across Metropolitan Status and Size," IZA Discussion Papers 13468, Institute of Labor Economics (IZA).
- Mohamed R Ibrahim & James Haworth & Tao Cheng, 2021. "URBAN-i: From urban scenes to mapping slums, transport modes, and pedestrians in cities using deep learning and computer vision," Environment and Planning B, , vol. 48(1), pages 76-93, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6424-:d:287240. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6424-d287240.html