IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5628-d275851.html
   My bibliography  Save this article

Valuing Biodiversity in Life Cycle Impact Assessment

Author

Listed:
  • Jan Paul Lindner

    (Department of Life Cycle Engineering, Fraunhofer Institute for Building Physics, 70563 Stuttgart, Germany
    Department Mechatronics and Mechanical Engineering, Bochum University of Applied Sciences, 44801 Bochum, Germany)

  • Horst Fehrenbach

    (ifeu—Institut für Energie- und Umweltforschung, 69121 Heidelberg, Germany)

  • Lisa Winter

    (Chair of sustainable engineering, Technical University of Berlin, 10623 Berlin, Germany)

  • Judith Bloemer

    (ifeu—Institut für Energie- und Umweltforschung, 69121 Heidelberg, Germany)

  • Eva Knuepffer

    (Department of Life Cycle Engineering, Fraunhofer Institute for Building Physics, 70563 Stuttgart, Germany)

Abstract

In this article, the authors propose an impact assessment method for life cycle assessment (LCA) that adheres to established LCA principles for land use-related impact assessment, bridges current research gaps and addresses the requirements of different stakeholders for a methodological framework. The conservation of biodiversity is a priority for humanity, as expressed in the framework of the Sustainable Development Goals (SDGs). Addressing biodiversity across value chains is a key challenge for enabling sustainable production pathways. Life cycle assessment is a standardised approach to assess and compare environmental impacts of products along their value chains. The impact assessment method presented in this article allows the quantification of the impact of land-using production processes on biodiversity for several broad land use classes. It provides a calculation framework with degrees of customisation (e.g., to take into account regional conservation priorities), but also offers a default valuation of biodiversity based on naturalness. The applicability of the method is demonstrated through an example of a consumer product. The main strength of the approach is that it yields highly aggregated information on the biodiversity impacts of products, enabling biodiversity-conscious decisions about raw materials, production routes and end user products.

Suggested Citation

  • Jan Paul Lindner & Horst Fehrenbach & Lisa Winter & Judith Bloemer & Eva Knuepffer, 2019. "Valuing Biodiversity in Life Cycle Impact Assessment," Sustainability, MDPI, vol. 11(20), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5628-:d:275851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    2. Lisa Winter & Markus Berger & Nikolay Minkov & Matthias Finkbeiner, 2017. "Analysing the Impacts of Various Environmental Parameters on the Biodiversity Status of Major Habitats," Sustainability, MDPI, vol. 9(10), pages 1-14, September.
    3. Keller, Heiko & Rettenmaier, Nils & Reinhardt, Guido Andreas, 2015. "Integrated life cycle sustainability assessment – A practical approach applied to biorefineries," Applied Energy, Elsevier, vol. 154(C), pages 1072-1081.
    4. Vanessa Gabel & Robert Home & Sibylle Stöckli & Matthias Meier & Matthias Stolze & Ulrich Köpke, 2018. "Evaluating On-Farm Biodiversity: A Comparison of Assessment Methods," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Pelzeter & Vanessa Bach & Martin Henßler & Klaus Ruhland & Matthias Finkbeiner, 2022. "Enhancement of the ESSENZ Method and Application in a Case Study on Batteries," Resources, MDPI, vol. 11(6), pages 1-25, May.
    2. Jianling Fan & Cuiying Liu & Jianan Xie & Lu Han & Chuanhong Zhang & Dengwei Guo & Junzhao Niu & Hao Jin & Brian G. McConkey, 2022. "Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    3. Andrea Lulovicova & Stephane Bouissou, 2023. "Environmental Assessment of Local Food Policies through a Territorial Life Cycle Approach," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    4. Eskil Mattsson & Martin Erlandsson & Per Erik Karlsson & Hampus Holmström, 2022. "A Conceptual Landscape-Level Approach to Assess the Impacts of Forestry on Biodiversity," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    5. Fritz Balkau & Alberto Bezama & Noemie Leroy-Parmentier & Guido Sonnemann, 2021. "A Review on the Use of Life Cycle Methodologies and Tools in Sustainable Regional Development," Sustainability, MDPI, vol. 13(19), pages 1-41, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sastre, Carlos M. & Carrasco, Juan & Barro, Ruth & González-Arechavala, Yolanda & Maletta, Emiliano & Santos, Ana M. & Ciria, Pilar, 2016. "Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass," Applied Energy, Elsevier, vol. 179(C), pages 847-863.
    2. Yang Liu & Jing Zhao & Xi Zheng & Xiaoyang Ou & Yaru Zhang & Jiaying Li, 2023. "Evaluation of Biodiversity Maintenance Capacity in Forest Landscapes: A Case Study in Beijing, China," Land, MDPI, vol. 12(7), pages 1-23, June.
    3. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    4. Bardsley, Douglas K. & Bardsley, Annette M., 2014. "Organising for socio-ecological resilience: The roles of the mountain farmer cooperative Genossenschaft Gran Alpin in Graubünden, Switzerland," Ecological Economics, Elsevier, vol. 98(C), pages 11-21.
    5. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    6. Oskar Englund & Ioannis Dimitriou & Virginia H. Dale & Keith L. Kline & Blas Mola‐Yudego & Fionnuala Murphy & Burton English & John McGrath & Gerald Busch & Maria Cristina Negri & Mark Brown & Kevin G, 2020. "Multifunctional perennial production systems for bioenergy: performance and progress," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    7. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    8. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    9. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    10. Sueur, Cédric & Fourneret, Eric & Espinosa, Romain, 2023. "Animal capital: a new way to define human-animal bond in view of global changes," OSF Preprints svg7x, Center for Open Science.
    11. Bogoni, Juliano André & Peres, Carlos A. & Ferraz, Katia M.P.M.B., 2020. "Effects of mammal defaunation on natural ecosystem services and human well being throughout the entire Neotropical realm," Ecosystem Services, Elsevier, vol. 45(C).
    12. Muhammad Mumtaz Khan & Muhammad Tahir Akram & Rhonda Janke & Rashad Waseem Khan Qadri & Abdullah Mohammed Al-Sadi & Aitazaz A. Farooque, 2020. "Urban Horticulture for Food Secure Cities through and beyond COVID-19," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    13. Daniels, Silvie & Bellmore, J. Ryan & Benjamin, Joseph R. & Witters, Nele & Vangronsveld, Jaco & Van Passel, Steven, 2018. "Quantification of the Indirect Use Value of Functional Group Diversity Based on the Ecological Role of Species in the Ecosystem," Ecological Economics, Elsevier, vol. 153(C), pages 181-194.
    14. Yiwei Lian & Yang Bai & Zhongde Huang & Maroof Ali & Jie Wang & Haoran Chen, 2024. "Spatio-Temporal Changes and Habitats of Rare and Endangered Species in Yunnan Province Based on MaxEnt Model," Land, MDPI, vol. 13(2), pages 1-19, February.
    15. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    16. Eva M. Murgado-Armenteros & María Gutierrez-Salcedo & Francisco José Torres-Ruiz, 2020. "The Concern about Biodiversity as a Criterion for the Classification of the Sustainable Consumer: A Cross-Cultural Approach," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    17. Gaeun Kim & Jiwon Kim & Youngjin Ko & Olebogeng Thelma G. Eyman & Sarwat Chowdhury & Julie Adiwal & Wookyun Lee & Yowhan Son, 2021. "How Do Nature-Based Solutions Improve Environmental and Socio-Economic Resilience to Achieve the Sustainable Development Goals? Reforestation and Afforestation Cases from the Republic of Korea," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    18. Chun-Huo Chiu & Anne Chao, 2014. "Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-17, July.
    19. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    20. Körner, Katrin & Pfestorf, Hans & May, Felix & Jeltsch, Florian, 2014. "Modelling the effect of belowground herbivory on grassland diversity," Ecological Modelling, Elsevier, vol. 273(C), pages 79-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5628-:d:275851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.