IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011529.html
   My bibliography  Save this article

Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning

Author

Listed:
  • Philipp D Lösel
  • Coline Monchanin
  • Renaud Lebrun
  • Alejandra Jayme
  • Jacob J Relle
  • Jean-Marc Devaud
  • Vincent Heuveline
  • Mathieu Lihoreau

Abstract

Analysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains. We revealed strong inter-individual variations in total brain size that are consistent across colonies and species, and may underpin behavioural variability central to complex social organisations. In addition, the bumblebee dataset showed a significant level of lateralization in optic and antennal lobes, providing a potential explanation for reported variations in visual and olfactory learning. Our fast, robust and user-friendly approach holds considerable promises for carrying out large-scale quantitative neuroanatomical comparisons across a wider range of animals. Ultimately, this will help address fundamental unresolved questions related to the evolution of animal brains and cognition.Author summary: Bees, despite their small brains, possess a rich behavioural repertoire and show significant variations among individuals. In social bees this variability is key to the division of labour that maintains their complex social organizations and has been linked to the maturation of specific brain areas as a result of development and foraging experience. This makes bees an ideal model for understanding insect cognitive functions and the neural mechanisms that underlie them. However, due to the scarcity of comparative data, the relationship between brain neuro-architecture and behavioural variance remains unclear. To address this problem, we developed an AI-based approach for automated analysis of three-dimensional brain images and analysed an unprecedentedly large dataset of honey bee and bumblebee brains. Through this process, we were able to identify previously undescribed anatomical features that correlate with known behaviours, supporting recent evidence of lateralized behaviour in foraging and pollination. Our method is open source, easily accessible online, user-friendly, fast, accurate, and robust to different species, enabling large-scale comparative analyses across the animal kingdom. This includes investigating the impact of external stressors such as environmental pollution and climate change on cognitive development, helping us understand the mechanisms underlying the cognitive abilities of animals and the implications for their survival and adaptation.

Suggested Citation

  • Philipp D Lösel & Coline Monchanin & Renaud Lebrun & Alejandra Jayme & Jacob J Relle & Jean-Marc Devaud & Vincent Heuveline & Mathieu Lihoreau, 2023. "Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning," PLOS Computational Biology, Public Library of Science, vol. 19(10), pages 1-26, October.
  • Handle: RePEc:plo:pcbi00:1011529
    DOI: 10.1371/journal.pcbi.1011529
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011529
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011529&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Jing Zhao & Xi Zheng & Xiaoyang Ou & Yaru Zhang & Jiaying Li, 2023. "Evaluation of Biodiversity Maintenance Capacity in Forest Landscapes: A Case Study in Beijing, China," Land, MDPI, vol. 12(7), pages 1-23, June.
    2. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    3. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    4. repec:osf:osfxxx:svg7x_v1 is not listed on IDEAS
    5. Bardsley, Douglas K. & Bardsley, Annette M., 2014. "Organising for socio-ecological resilience: The roles of the mountain farmer cooperative Genossenschaft Gran Alpin in Graubünden, Switzerland," Ecological Economics, Elsevier, vol. 98(C), pages 11-21.
    6. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    7. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Oskar Englund & Ioannis Dimitriou & Virginia H. Dale & Keith L. Kline & Blas Mola‐Yudego & Fionnuala Murphy & Burton English & John McGrath & Gerald Busch & Maria Cristina Negri & Mark Brown & Kevin G, 2020. "Multifunctional perennial production systems for bioenergy: performance and progress," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    9. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    10. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    11. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    12. Sueur, Cédric & Fourneret, Eric & Espinosa, Romain, 2023. "Animal capital: a new way to define human-animal bond in view of global changes," OSF Preprints svg7x, Center for Open Science.
    13. Bogoni, Juliano André & Peres, Carlos A. & Ferraz, Katia M.P.M.B., 2020. "Effects of mammal defaunation on natural ecosystem services and human well being throughout the entire Neotropical realm," Ecosystem Services, Elsevier, vol. 45(C).
    14. Muhammad Mumtaz Khan & Muhammad Tahir Akram & Rhonda Janke & Rashad Waseem Khan Qadri & Abdullah Mohammed Al-Sadi & Aitazaz A. Farooque, 2020. "Urban Horticulture for Food Secure Cities through and beyond COVID-19," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    15. Daniels, Silvie & Bellmore, J. Ryan & Benjamin, Joseph R. & Witters, Nele & Vangronsveld, Jaco & Van Passel, Steven, 2018. "Quantification of the Indirect Use Value of Functional Group Diversity Based on the Ecological Role of Species in the Ecosystem," Ecological Economics, Elsevier, vol. 153(C), pages 181-194.
    16. Yiwei Lian & Yang Bai & Zhongde Huang & Maroof Ali & Jie Wang & Haoran Chen, 2024. "Spatio-Temporal Changes and Habitats of Rare and Endangered Species in Yunnan Province Based on MaxEnt Model," Land, MDPI, vol. 13(2), pages 1-19, February.
    17. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    18. Prem Chandra Pandey & Manish Pandey, 2023. "Highlighting the role of agriculture and geospatial technology in food security and sustainable development goals," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(5), pages 3175-3195, October.
    19. Eva M. Murgado-Armenteros & María Gutierrez-Salcedo & Francisco José Torres-Ruiz, 2020. "The Concern about Biodiversity as a Criterion for the Classification of the Sustainable Consumer: A Cross-Cultural Approach," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    20. Gaeun Kim & Jiwon Kim & Youngjin Ko & Olebogeng Thelma G. Eyman & Sarwat Chowdhury & Julie Adiwal & Wookyun Lee & Yowhan Son, 2021. "How Do Nature-Based Solutions Improve Environmental and Socio-Economic Resilience to Achieve the Sustainable Development Goals? Reforestation and Afforestation Cases from the Republic of Korea," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    21. Chun-Huo Chiu & Anne Chao, 2014. "Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.