IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5225-d270116.html
   My bibliography  Save this article

Determinants and Differences of Grain Production Efficiency Between Main and Non-Main Producing Area in China

Author

Listed:
  • Furong Chen

    () (Chinese Academy of Agricultural Sciences, Institute of Agricultural Economics and Development, Beijing 100089, China)

  • Yifu Zhao

    () (Chinese Academy of Agricultural Sciences, Institute of Agricultural Economics and Development, Beijing 100089, China)

Abstract

This paper investigated the determinants, especially labor transformation, and differences of technical efficiency between main and non-main grain-producing area in China based on a panel data from 30 provinces in the period of 2001–2017. Stochastic frontier production function was used to estimate the level of technical efficiency and the marginal productivity of different inputs. The estimated results showed that land is the most important factor to improve China’s grain output, followed by fertilizers, labor, and machinery inputs. There was a significant 4.6 percent gap of production efficiency between main and non-main producing provinces. Influence of rural labor transformation was confirmed to be positive to improve technical efficiency.

Suggested Citation

  • Furong Chen & Yifu Zhao, 2019. "Determinants and Differences of Grain Production Efficiency Between Main and Non-Main Producing Area in China," Sustainability, MDPI, Open Access Journal, vol. 11(19), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5225-:d:270116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    2. Weiming Tian & Guang Wan, 2000. "Technical Efficiency and Its Determinants in China's Grain Production," Journal of Productivity Analysis, Springer, vol. 13(2), pages 159-174, March.
    3. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    4. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    5. James Odeck, 2007. "Measuring technical efficiency and productivity growth: a comparison of SFA and DEA on Norwegian grain production data," Applied Economics, Taylor & Francis Journals, vol. 39(20), pages 2617-2630.
    6. Siyan Zeng & Fengwu Zhu & Fu Chen & Man Yu & Shaoliang Zhang & Yongjun Yang, 2018. "Assessing the Impacts of Land Consolidation on Agricultural Technical Efficiency of Producers: A Survey from Jiangsu Province, China," Sustainability, MDPI, Open Access Journal, vol. 10(7), pages 1-17, July.
    7. Coelli, T. J., 1992. "A computer program for frontier production function estimation : Frontier version 2.0," Economics Letters, Elsevier, vol. 39(1), pages 29-32, May.
    8. Babakholov Sherzod & Kyung-Ryang Kim & Sang Hyeon Lee, 2018. "Agricultural Transition and Technical Efficiency: An Empirical Analysis of Wheat-Cultivating Farms in Samarkand Region, Uzbekistan," Sustainability, MDPI, Open Access Journal, vol. 10(9), pages 1-11, September.
    9. JIANG,Mengyuan & QI,Chunjie, 2018. "Measurement and Analysis of Agricultural Production Efficiency in Taiwan of China Based on Three-stage DEA Model," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 10(07), July.
    10. Thiam, Abdourahmane & Bravo-Ureta, Boris E. & Rivas, Teodoro E., 2001. "Technical efficiency in developing country agriculture: a meta-analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 235-243, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhuo & Huffman, Wallace E. & Rozelle, Scott, 2009. "Farm technology and technical efficiency: Evidence from four regions in China," China Economic Review, Elsevier, vol. 20(2), pages 153-161, June.
    2. Ali D. Cagdas & Scott R. Jeffrey & Elwin G. Smith & Peter C. Boxall, 2016. "Environmental Stewardship and Technical Efficiency in Canadian Prairie Canola Production," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 455-477, September.
    3. B.C. Okoye & A. Abass & B. Bachwenkizi & G. Asumugha & B. Alenkhe & R. Ranaivoson & R. Randrianarivelo & N. Rabemanantsoa & I. Ralimanana, 2016. "Differentials in technical efficiency among smallholder cassava farmers in Central Madagascar: A Cobb Douglas stochastic frontier production approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1143345-114, December.
    4. à lvaro Ramírez Suárez, 2013. "Análisis de eficiencia económica de fincas arroceras: una aplicación de una función determinística de ingresos brutos frontera," Revista Lebret, Universidad Santo Tomás - Bucaramanga, vol. 5, pages 213-240, December.
    5. à lvaro Ramírez Suárez, 2013. "Análisis de eficiencia económica de fincas arroceras: una aplicación de una función determinística de ingresos brutos frontera," Revista Lebret, Universidad Santo Tomás - Bucaramanga, vol. 5, pages 213-240, December.
    6. Solis, Daniel & Bravo-Ureta, Boris E. & Quiroga, Ricardo E., 2006. "The Effect Of Soil Conservation On Technical Efficiency: Evidence From Central America," 2006 Annual meeting, July 23-26, Long Beach, CA 21345, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Aomar Ibourk & Sergio Perelman, 2001. "Frontières d'efficacité et processus d'appariement sur le marché du travail au Maroc," Economie & Prévision, La Documentation Française, vol. 0(4), pages 33-45.
    8. Zoltan Bakucs & Imre Fertő & József Fogarasi & Laure Latruffe & Yann Desjeux & Eduard Matveev & Sonia Marongiu & Mark Dolman & Rafat Soboh, 2011. "EU farms’ technical efficiency and productivity change in 1990 – 2006 [Efficacité technique et changement de productivité des exploitations agricoles européennes 1990-2006]," Post-Print hal-02808334, HAL.
    9. Y. Wu, 1997. "Productivity & Efficiency: Evidence from the Chinese regional economies," Economics Discussion / Working Papers 97-18, The University of Western Australia, Department of Economics.
    10. Wu, Yanrui, 2000. "Is China's economic growth sustainable? A productivity analysis," China Economic Review, Elsevier, vol. 11(3), pages 278-296.
    11. Francesco Aiello & Graziella Bonanno, 2018. "On The Sources Of Heterogeneity In Banking Efficiency Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 32(1), pages 194-225, February.
    12. Y. Wu, 1998. "The Performance of Foreign Direct Investment in China: A preliminary analysis," Economics Discussion / Working Papers 98-06, The University of Western Australia, Department of Economics.
    13. Giannis Karagiannis, 2014. "Modeling issues in applied efficiency analysis: agriculture," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 12-18.
    14. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    15. Quang Nguyen & Sean Pascoe & Louisa Coglan & Son Nghiem, 2021. "The sensitivity of efficiency scores to input and other choices in stochastic frontier analysis: an empirical investigation," Journal of Productivity Analysis, Springer, vol. 55(1), pages 31-40, February.
    16. Guangming Rao & Bin Su & Jinlian Li & Yong Wang & Yanhua Zhou & Zhaolin Wang, 2019. "Carbon Sequestration Total Factor Productivity Growth and Decomposition: A Case of the Yangtze River Economic Belt of China," Sustainability, MDPI, Open Access Journal, vol. 11(23), pages 1-28, November.
    17. Madau, Fabio A., 2011. "Parametric Estimation of Technical and Scale Efficiencies in Italian Citrus Farming," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(1).
    18. Cagdas, Ali D. & Jeffrey, Scott R. & Smith, Elwin G. & Boxall, Peter C., 2013. "Adoption of BMPs and technical inefficiency in Canadian canola production," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150200, Agricultural and Applied Economics Association.
    19. Garcia Suarez, F. & Quesada, G. Perez & Molina Ricetto, C., 2018. "Rangeland cattle production in Uruguay: single-output versus multi-output efficiency measures," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277178, International Association of Agricultural Economists.
    20. Jerzy Marzec & Andrzej Pisulewski & Artur Prędki, 2019. "Efektywność techniczna i produktywność polskich gospodarstw rolnych specjalizujących się w uprawach polowych," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 2, pages 95-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5225-:d:270116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.