IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4679-d261646.html
   My bibliography  Save this article

Towards Zero Emissions Noosa

Author

Listed:
  • Carina Anderson

    (School of Nursing, Midwifery and Social Sciences, CQUniversity, Noosa, QLD 4566, Australia
    Zero Emissions Noosa Inc., Noosa, QLD 4567, Australia)

  • Robert Passey

    (School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), New South Wales, SYD 2052, Australia)

  • Jeremy De Valck

    (School of Business and Law, CQUniversity, Brisbane, QLD 4000, Australia)

  • Rakibuzzaman Shah

    (School of Engineering and Technology, CQUniversity, Perth, WA 6000, Australia)

Abstract

This paper reports on a case study of the community group Zero Emissions Noosa, whose goal is for 100% renewable electricity in the Noosa Shire (Queensland, Australia) by 2026. Described within this paper are the processes used by Zero Emissions Noosa to set up their zero emissions plan, involving community engagement and the use of an external consultant. The external consultant was employed to produce a detailed report outlining how to successfully achieve zero emissions from electricity in the Noosa Shire by 2026. This paper explains how and why the community engagement process used to produce the report was just as important as the outcomes of the report itself. Modeling was undertaken, and both detailed and contextual information was provided. Inclusion of the community in developing the scenario parameters for the modeling had a number of benefits including establishing the context within which their actions would occur and focusing their efforts on options that were technically feasible, financially viable and within their capabilities to implement. This provided a focal point for the community in calling meetings and contacting stakeholders. Rather than prescribing a particular course of action, it also resulted in a toolbox of options, a range of possible solutions that is flexible enough to fit into whatever actions are preferred by the community. The approach and outcomes discussed in this paper should, therefore, be useful to other communities with similar carbon emission reduction goals.

Suggested Citation

  • Carina Anderson & Robert Passey & Jeremy De Valck & Rakibuzzaman Shah, 2019. "Towards Zero Emissions Noosa," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4679-:d:261646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Passey, Robert & Bailey, Ian & Twomey, Paul & MacGill, Iain, 2012. "The inevitability of ‘flotilla policies’ as complements or alternatives to flagship emissions trading schemes," Energy Policy, Elsevier, vol. 48(C), pages 551-561.
    2. Ortzi Akizu & Gorka Bueno & Iñaki Barcena & Erol Kurt & Nurettin Topaloğlu & Jose Manuel Lopez-Guede, 2018. "Contributions of Bottom-Up Energy Transitions in Germany: A Case Study Analysis," Energies, MDPI, vol. 11(4), pages 1-21, April.
    3. Berry, Stephen & Davidson, Kathryn & Saman, Wasim, 2013. "The impact of niche green developments in transforming the building sector: The case study of Lochiel Park," Energy Policy, Elsevier, vol. 62(C), pages 646-655.
    4. Bergek, Anna & Mignon, Ingrid, 2017. "Motives to adopt renewable electricity technologies: Evidence from Sweden," Energy Policy, Elsevier, vol. 106(C), pages 547-559.
    5. Rogers, Jennifer C. & Simmons, Eunice A. & Convery, Ian & Weatherall, Andrew, 2012. "Social impacts of community renewable energy projects: findings from a woodfuel case study," Energy Policy, Elsevier, vol. 42(C), pages 239-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busch, Henner & Ruggiero, Salvatore & Isakovic, Aljosa & Hansen, Teis, 2021. "Policy challenges to community energy in the EU: A systematic review of the scientific literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Songsore, Emmanuel & Buzzelli, Michael, 2014. "Social responses to wind energy development in Ontario: The influence of health risk perceptions and associated concerns," Energy Policy, Elsevier, vol. 69(C), pages 285-296.
    3. Emmanuelle Reuter, 2022. "Hybrid business models in the sharing economy: The role of business model design for managing the environmental paradox," Business Strategy and the Environment, Wiley Blackwell, vol. 31(2), pages 603-618, February.
    4. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    5. Feser, Daniel & Runst, Petrik, 2016. "Energy efficiency consultants as change agents? Examining the reasons for EECs’ limited success," Energy Policy, Elsevier, vol. 98(C), pages 309-317.
    6. Burghard, Uta & Breitschopf, Barbara & Wohlfarth, Katharina & Müller, Fabian & Keil, Julia, 2021. "Perception of monetary and non-monetary effects on the energy transition: Results of a mixed method approach," Working Papers "Sustainability and Innovation" S04/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    7. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    9. Chunhong Sheng & Yun Cao & Bing Xue, 2018. "Residential Energy Sustainability in China and Germany: The Impact of National Energy Policy System," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    10. Fronteddu, Antonio, 2023. "From extractivism to community resilience: the promise and perils of Sardinia's energy transition," Thesis Commons zxd95, Center for Open Science.
    11. Trivess Moore & Andréanne Doyon, 2018. "The Uncommon Nightingale: Sustainable Housing Innovation in Australia," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
    12. Zhang, Li & Liu, Hongyu & Zhang, Xiaoling, 2024. "Enhancing green housing diffusion through density bonuses: An analysis using the Use-Purchase-Supply model," Land Use Policy, Elsevier, vol. 147(C).
    13. Goedkoop, F. & Dijkstra, J. & Flache, A., 2022. "A social network perspective on involvement in community energy initiatives: The role of direct and extended social ties to initiators," Energy Policy, Elsevier, vol. 171(C).
    14. Mignon, Ingrid & Bastås, Lisa, 2025. "Agency of institutional intermediaries in transitions: A study of influences on intermediary practices," Technological Forecasting and Social Change, Elsevier, vol. 217(C).
    15. Iñigo Capellán-Pérez & David Álvarez-Antelo & Luis J. Miguel, 2019. "Global Sustainability Crossroads : A Participatory Simulation Game to Educate in the Energy and Sustainability Challenges of the 21st Century," Sustainability, MDPI, vol. 11(13), pages 1-23, July.
    16. Berka, Anna L. & Creamer, Emily, 2018. "Taking stock of the local impacts of community owned renewable energy: A review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3400-3419.
    17. repec:osf:thesis:zxd95_v1 is not listed on IDEAS
    18. Dóci, Gabriella & Vasileiadou, Eleftheria, 2015. "“Let׳s do it ourselves” Individual motivations for investing in renewables at community level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 41-50.
    19. Bergmann, Ariel & Burton, Bruce & Klaes, Matthias, 2021. "European perceptions on crowdfunding for renewables: Positivity and pragmatism," Ecological Economics, Elsevier, vol. 179(C).
    20. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.
    21. Geertje Bekebrede & Ellen Van Bueren & Ivo Wenzler, 2018. "Towards a Joint Local Energy Transition Process in Urban Districts: The GO2Zero Simulation Game," Sustainability, MDPI, vol. 10(8), pages 1-20, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4679-:d:261646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.