IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3874-d248952.html
   My bibliography  Save this article

A Holistic Packaging Efficiency Evaluation Method for Loss Prevention in Fresh Vegetable Cold Chain

Author

Listed:
  • Jingjie Wang

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Zhiqiang Zhu

    (National Engineering and Technology Research Centre for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300384, China)

  • Liliana Mihaela Moga

    (The Doctoral School, “Dunărea de Jos” University of Galati, Domnească Street, 47, RO-800008 Galati, Romania)

  • Jinyou Hu

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Xiaoshuan Zhang

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Laboratory of Food Quality and Safety, Beijing 100083, China)

Abstract

With the continuous push for improving packaging efficiency of current packaging practices to prevent losses in a real cold chain, a holistic evaluation method with improved indicators and a conceptual assessment framework to improve packaging efficiency continuously in a fresh vegetable cold chain was proposed. Based on two fresh leafy vegetables with typical packaging practices in a real cold chain in China, the evaluation method was performed and tested from a macro perspective, and then the packaging efficiency constitution with loss prevention perspective was better visualized. The results show that the method can be used for improving the performance of specific packaging efficiency in the fresh vegetable cold chain and improving the suggestions’ sustainability orientation, and systematically summarize their impacts on packaging efficiency; specifically as follows: (1) Since the correlation between the state of fresh vegetables and the environmental stress in the package, the performance of the micro-environment parameters should be given priority for packaging efficiency improvement in loss prevention. (2) Although the use of the packaging materials in current practices was relatively better, it still can improve in food safety and packaging sustainability of the packaging practices through the selection of packaging materials with better sustainability characteristics. (3) Via the visualization of targeted packaging efficiency in cold chain, the fluctuation of loss rates in the cold chain process are well perceived, and there are still room can be performed continuously to realize more efficient packaging for better loss prevention. (4) The method has drawbacks that the optimization of the weights to the given indicators and the indicators based on nutrition and quality of fresh produce was not considered in current research, and it should be strengthened in future research. (5) It is necessary that the perception of differences in targeted packaging efficiency and the consciousness to improve specific packaging efficiency in vegetable cold chain for sustainability.

Suggested Citation

  • Jingjie Wang & Zhiqiang Zhu & Liliana Mihaela Moga & Jinyou Hu & Xiaoshuan Zhang, 2019. "A Holistic Packaging Efficiency Evaluation Method for Loss Prevention in Fresh Vegetable Cold Chain," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3874-:d:248952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuai Yang & Yujie Xiao & Yan Zheng & Yan Liu, 2017. "The Green Supply Chain Design and Marketing Strategy for Perishable Food Based on Temperature Control," Sustainability, MDPI, vol. 9(9), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuemei Fan & Ziyue Nan & Yuanhang Ma & Yingdan Zhang & Fei Han, 2021. "Research on the Spatio-Temporal Impacts of Environmental Factors on the Fresh Agricultural Product Supply Chain and the Spatial Differentiation Issue—An Empirical Research on 31 Chinese Provinces," IJERPH, MDPI, vol. 18(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaekwon Chung, 2019. "Effective Pricing of Perishables for a More Sustainable Retail Food Market," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    2. Yan Fang & Yiping Jiang & Lijun Sun & Xingxing Han, 2018. "Design of Green Cold Chain Networks for Imported Fresh Agri-Products in Belt and Road Development," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    3. Kamble, Sachin S. & Gunasekaran, Angappa & Gawankar, Shradha A., 2020. "Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 219(C), pages 179-194.
    4. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    5. Andrea Gallo & Riccardo Accorsi & Giulia Baruffaldi & Riccardo Manzini, 2017. "Designing Sustainable Cold Chains for Long-Range Food Distribution: Energy-Effective Corridors on the Silk Road Belt," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    6. Shi‐Woei Lin & Januardi, 2023. "Two‐stage pricing of perishable food supply chain with quality‐keeping and waste reduction efforts," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(3), pages 1749-1766, April.
    7. Amin Gharehyakheh & Caroline C. Krejci & Jaime Cantu & K. Jamie Rogers, 2020. "A Multi-Objective Model for Sustainable Perishable Food Distribution Considering the Impact of Temperature on Vehicle Emissions and Product Shelf Life," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    8. Linh N. K. Duong & Lincoln C. Wood & William Y. C. Wang, 2018. "Effects of Consumer Demand, Product Lifetime, and Substitution Ratio on Perishable Inventory Management," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    9. Li-Chun Huang & Yu-Hui Chen & Ya-Hui Chen & Chi-Fang Wang & Ming-Che Hu, 2018. "Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    10. Katherinne Salas-Navarro & Paula Serrano-Pájaro & Holman Ospina-Mateus & Ronald Zamora-Musa, 2022. "Inventory Models in a Sustainable Supply Chain: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3874-:d:248952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.