IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p49-d192386.html
   My bibliography  Save this article

The Optimization of Visual Comfort and Energy Consumption Induced by Natural Light Based on PSO

Author

Listed:
  • Yonggang Zhang

    (School of Information Science and Technology, Fudan University, Shanghai 200433, China
    Shanghai Institute of Intelligent Electronics & Systems, Shanghai 200433, China)

  • Yongwei Zhong

    (School of Information Science and Technology, Fudan University, Shanghai 200433, China
    Shanghai Institute of Intelligent Electronics & Systems, Shanghai 200433, China
    OnePlus Technology (Shenzhen) Co., Ltd., Shenzhen 518040, China)

  • Yingda Gong

    (School of Information Science and Technology, Fudan University, Shanghai 200433, China)

  • Lirong Zheng

    (School of Information Science and Technology, Fudan University, Shanghai 200433, China
    Shanghai Institute of Intelligent Electronics & Systems, Shanghai 200433, China)

Abstract

This paper presents the “model construction method”, an optimization method and industrial internet of things (IIoT) technology that is proposed for nearly zero energy buildings (nZEB), providing a comfortable visual environment by only utilizing natural light while improving its induced indoor air conditioner energy consumption (ACEC). The incident light is sampled by light sensors, and this data is sent to the cloud server. The visual comfort and indoor ACEC, both of which are induced by incident light, are combined as the optimization objective, and the area of windows covered by curtains is used as the optimal parameter in the particle swarm optimization (PSO). The visual comfort and indoor ACEC induced by incident light are modeled, and the construction method is independent of the geographical location. Five modes are defined for applications with different purposes, the performance of which are investigated and compared carefully. The result shows that natural light could provide comfortable visual comfort, while the ACEC induced by it could be reduced effectively.

Suggested Citation

  • Yonggang Zhang & Yongwei Zhong & Yingda Gong & Lirong Zheng, 2018. "The Optimization of Visual Comfort and Energy Consumption Induced by Natural Light Based on PSO," Sustainability, MDPI, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:49-:d:192386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Babar Rasheed & Nadeem Javaid & Ashfaq Ahmad & Mohsin Jamil & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh, 2016. "Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing," Energies, MDPI, vol. 9(8), pages 1-25, July.
    2. Mehdi Amirkhani & Veronica Garcia-Hansen & Gillian Isoardi & Alicia Allan, 2017. "An Energy Efficient Lighting Design Strategy to Enhance Visual Comfort in Offices with Windows," Energies, MDPI, vol. 10(8), pages 1-16, August.
    3. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    4. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    5. Muqaddas Naz & Zafar Iqbal & Nadeem Javaid & Zahoor Ali Khan & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2018. "Efficient Power Scheduling in Smart Homes Using Hybrid Grey Wolf Differential Evolution Optimization Technique with Real Time and Critical Peak Pricing Schemes," Energies, MDPI, vol. 11(2), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makhadmeh, Sharif Naser & Khader, Ahamad Tajudin & Al-Betar, Mohammed Azmi & Naim, Syibrah & Abasi, Ammar Kamal & Alyasseri, Zaid Abdi Alkareem, 2019. "Optimization methods for power scheduling problems in smart home: Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Yanan Liu & Yixuan Gao & Yu Hao & Hua Liao, 2016. "The Relationship between Residential Electricity Consumption and Income: A Piecewise Linear Model with Panel Data," Energies, MDPI, vol. 9(10), pages 1-11, October.
    3. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    4. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    5. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    6. Mariko Almeida Carneiro & Diogo Da Fonseca-Soares & Lucian Hendyo Max Pereira & Angel Firmín Ramos-Ridao, 2022. "An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    7. Nweye, Kingsley & Nagy, Zoltan, 2022. "MARTINI: Smart meter driven estimation of HVAC schedules and energy savings based on Wi-Fi sensing and clustering," Applied Energy, Elsevier, vol. 316(C).
    8. Deb, C. & Gelder, L.V. & Spiekman, M. & Pandraud, Guillaume & Jack, R. & Fitton, R., 2021. "Measuring the heat transfer coefficient (HTC) in buildings: A stakeholder's survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    10. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    11. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
    12. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    13. Wulfran Fendzi Mbasso & Reagan Jean Jacques Molu & Serge Raoul Dzonde Naoussi & Saatong Kenfack, 2022. "Demand-Supply Forecasting based on Deep Learning for Electricity Balance in Cameroon," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 99-103, July.
    14. Fatih Issi & Orhan Kaplan, 2018. "The Determination of Load Profiles and Power Consumptions of Home Appliances," Energies, MDPI, vol. 11(3), pages 1-18, March.
    15. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    16. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    17. Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    18. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Heangwoo Lee & Chang-ho Choi & Minki Sung, 2018. "Development of a Dimming Lighting Control System Using General Illumination and Location-Awareness Technology," Energies, MDPI, vol. 11(11), pages 1-19, November.
    20. Nuria Martín-Chivelet & Cecilia Guillén & Juan Francisco Trigo & José Herrero & Juan José Pérez & Faustino Chenlo, 2018. "Comparative Performance of Semi-Transparent PV Modules and Electrochromic Windows for Improving Energy Efficiency in Buildings," Energies, MDPI, vol. 11(6), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:49-:d:192386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.