IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p122-d193392.html
   My bibliography  Save this article

Enhancement in Productivity, Nutrients Use Efficiency, and Economics of Rice-Wheat Cropping Systems in India through Farmer’s Participatory Approach

Author

Listed:
  • A. S. Panwar

    (ICAR-Indian Institute of Farming System Research, Modipuram, Meerut 250 110, UP, India)

  • M. Shamim

    (ICAR-Indian Institute of Farming System Research, Modipuram, Meerut 250 110, UP, India)

  • Subhash Babu

    (ICAR Research Complex for North Eastern Hill Region, Umiam 793 103, Meghalaya, India)

  • N. Ravishankar

    (ICAR-Indian Institute of Farming System Research, Modipuram, Meerut 250 110, UP, India)

  • Ashisa Kumar Prusty

    (ICAR-Indian Institute of Farming System Research, Modipuram, Meerut 250 110, UP, India)

  • N. M. Alam

    (ICAR-Central Research Institute for Jute & Allied Fibres, Barrackpore 700 120, WB, India)

  • D. K. Singh

    (G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, India)

  • J. S. Bindhu

    (On Farm Research Centre, Kerala Agricultural University, Trivandrum 695 522, Kerala, India)

  • Jashanjot Kaur

    (Krishi Vigyan Kendra, Rauni 147 005, Patiala, Punjab, India)

  • L. N. Dashora

    (Rajasthan College of Agriculture, MPUA&T, Udaipur 313 001, Rajasthan, India)

  • M. D. Latheef Pasha

    (AICRP on Integrated Farming Systems, College of Agriculture, PJTSAU, Rajendranagar, Hyderabad 500 030, Telangana, India)

  • Soumitra Chaterjee

    (Department of Agricultural Economics, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia 741 235, WB, India)

  • M. T. Sanjay

    (Department of Agronomy, University of Agricultural Sciences, Hebbal Campus, Bangalore 560 024, Karnataka, India)

  • L. J. Desai

    (Sardarkrushinagar Dantiwada Agricultural University, Adiya 384 255, Patan, Gujarat, India)

Abstract

Rice-wheat cropping system (RWCS), a lifeline for the majority of the population in South Asia is under stress, due to the imbalanced and indiscriminate use of fertilizers. Therefore, we conducted an on-farm study at eight locations (Amritsar, Katni, Nainital, Samba, Pakur, Kanpur, Ambedkarnagar, and Dindori) covering five agro climatic zones of six Indian states (Jammu and Kashmir, Punjab, Uttarakhand, Uttar Pradesh, Madhya Pradesh, and Jharkhand) to (i) calculate the partial factor productivity (PFP) and agronomic use efficiency (AUE) to judge the response of NPK and Zn on grain yield of rice and wheat in RWCS and (ii) to work out the economic feasibility of different combinations of NPK in rice and wheat. Seven fertilizer treatments: Control (0-0-0), N alone (N-0-0), NP (N-P-0), NK (N-0-K), NPK (N-P-K), NPK+Zn (N-P-K-Zn), and FFMP (Farmers Fertilizer Management Practice) were assigned to all the locations. The levels of applied nutrients were used as per the standard recommendation of the location. The average of all the locations showed that the use of NP enhances the grain yield of rice and wheat by 105% and 97% over control, respectively. System productivity of RWCS was expressed in terms of rice grain equivalent yield (RGEY), Mg ha −1 . Among the locations, Samba recorded the lowest productivity of RWCS with fertilizer treatments. In contrast, the highest productivity of RWCS with fertilizer treatments was recorded at Amritsar, except with NPK and NPK+Zn fertilization, where Katni superseded the Amritsar. An approximately 3-fold productivity gain in RWCS was recorded with the conjoint use of NP over control across the locations. Overall, the results of our study showed that the balance application of NPK increased the productivity of RWCS 245% over control. Partial factor productivity of Nitrogen (PFP n ) N alone in rice varied across locations and ranged from 19 kg grain kg −1 N at Pakur to 41 kg grain kg −1 N at Amritsar. PFP n of N alone in wheat also ranged from 15.5 kg grain kg −1 of N at Ambedkarnagar to 28 kg grain kg −1 N at Amritsar. However, across locations the mean value of PFP n of N alone was 29 kg grain kg −1 N in rice and 21 kg grain kg −1 N in wheat. PFP n increased when combined application of N and P sorted in both rice and wheat across the locations. Similarly, combined application of NPK increased partial factor productivity of applied phosphorus (PFP p ) in both the crops at all the locations. The combined application of NPK increased the PFP k for applied K at all the location. The response of K application with N and P when averaged over the location was 114% in rice and 93% in wheat over the combined use of N and K. In our study, irrespective of fertilizer treatments, the agronomic use efficiency of applied N (AUE n ) and agronomic use efficiency of applied P (AUE p ) were greater in rice than in wheat across the location. With regards to the economics, the mean net monetary returns among the fertilizers treatments was minimum (INR 29.5 × 10 3 ha −1 ) for the application of N alone and maximum (INR 8.65 × 10 3 ha −1 ) for application of NPK+Zn. The mean marginal returns across the locations was in order of N alone > NK > FFM > NPK > NP > NPK+Zn.

Suggested Citation

  • A. S. Panwar & M. Shamim & Subhash Babu & N. Ravishankar & Ashisa Kumar Prusty & N. M. Alam & D. K. Singh & J. S. Bindhu & Jashanjot Kaur & L. N. Dashora & M. D. Latheef Pasha & Soumitra Chaterjee & M, 2018. "Enhancement in Productivity, Nutrients Use Efficiency, and Economics of Rice-Wheat Cropping Systems in India through Farmer’s Participatory Approach," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:122-:d:193392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Sohail Memon & Jun Guo & Ahmed Ali Tagar & Nazia Perveen & Changying Ji & Shamim Ara Memon & Noreena Memon, 2018. "The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    2. Tek B. Sapkota & Vivek Shankar & Munmun Rai & Mangi L Jat & Clare M. Stirling & Love K. Singh & Hanuman S. Jat & Mohinder S. Grewal, 2017. "Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    3. Ladha, J.K. & Yadvinder-Singh & Erenstein, O. & Hardy, B. (ed.), 2009. "Integrated Crop and Resource Management in the Rice-Wheat System of South Asia," IRRI Books, International Rice Research Institute (IRRI), number 164458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dileep Kumar & Khusvadan C. Patel & Vinubhai P. Ramani & Arvind K. Shukla & Sanjib Kumar Behera & Ravi A. Patel, 2022. "Influence of Different Rates and Frequencies of Zn Application to Maize–Wheat Cropping on Crop Productivity and Zn Use Efficiency," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2020. "Energy and carbon footprints of wheat establishment following different rice residue management strategies vis-à-vis conventional tillage coupled with rice residue burning in north-western India," Energy, Elsevier, vol. 200(C).
    2. Magnan, Nicholas & Spielman, David J. & Lybbert, Travis J. & Gulati, Kajal, 2015. "Leveling with friends: Social networks and Indian farmers' demand for a technology with heterogeneous benefits," Journal of Development Economics, Elsevier, vol. 116(C), pages 223-251.
    3. Gang Zhang & Dejian Wang & Yuanchun Yu, 2020. "Investigation into the Effects of Straw Retention and Nitrogen Reduction on CH 4 and N 2 O Emissions from Paddy Fields in the Lower Yangtze River Region, China," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    4. Nicholas Magnan & David J Spielman & Travis J. Lybbert & Kajal Gulati, 2013. "Leveling with Friends: Social Networks and Indian Farmers’ Demand for Agricultural Custom Hire Services," Working Papers id:5591, eSocialSciences.
    5. Gulab Singh Yadav & Rahul Datta & Shamina Imran Pathan & Rattan Lal & Ram Swaroop Meena & Subhash Babu & Anup Das & S. N. Bhowmik & Mrinmoy Datta & Poulami Saha & Pawan Kumar Mishra, 2017. "Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice ( Oryza sativa L.)–Rice System in North Eastern Region of India," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    6. Sidhu, H.S. & Jat, M.L. & Singh, Yadvinder & Sidhu, Ravneet Kaur & Gupta, Naveen & Singh, Parvinder & Singh, Pankaj & Jat, H.S. & Gerard, Bruno, 2019. "Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 216(C), pages 273-283.
    7. Gopal Datt Bhatta & Pramod Kumar Aggarwal & Amit Kumar Shrivastava & Lindsay Sproule, 2016. "Is rainfall gradient a factor of livelihood diversification? Empirical evidence from around climatic hotspots in Indo-Gangetic Plains," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1657-1678, December.
    8. Song, Jiashen & Zhang, Hongyuan & Chang, Fangdi & Yu, Ru & Wang, Jing & Wang, Xiquan & Li, Yuyi, 2022. "If the combination of straw interlayer and irrigation water reduction maintained sunflower yield by boosting soil fertility and improving bacterial community in arid and saline areas," Agricultural Water Management, Elsevier, vol. 262(C).
    9. Prabhjit Kaur & Kulvir Singh Saini & Sandeep Sharma & Jashanjot Kaur & Rajan Bhatt & Saud Alamri & Alanoud T. Alfagham & Sadam Hussain, 2023. "Increasing the Efficiency of the Rice–Wheat Cropping System through Integrated Nutrient Management," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    10. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    11. Saad, A.A. & Das, T.K. & Rana, D.S. & Sharma, A.R. & Bhattacharyya, Ranjan & Lal, Krishan, 2016. "Energy auditing of a maize–wheat–greengram cropping system under conventional and conservation agriculture in irrigated north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 116(P1), pages 293-305.
    12. Jeetendra Prakash Aryal & Dil Bahadur Rahut & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri, 2020. "Climate change mitigation options among farmers in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3267-3289, April.
    13. M L Jat & Yadvinder Singh & M L Jat & MK Gathala & YS Saharawat & JK Ladha & YS Saharawat, 2019. "Conservation Agriculture in Intensive Rice-Wheat Rotation of Western Indo-Gangetic Plains-Effect on Crop Physiology, Yield, Water Productivity and Economic Profitability," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(3), pages 88-102, April.
    14. Shengchun Li & Yilin Zhang & Lihao Guo & Xiaofang Li, 2022. "Impact of Tillage and Straw Treatment Methods on Rice Growth and Yields in a Rice–Ratoon Rice Cropping System," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    15. Muhammad Ameen & Wang Xiaochan & Muhammad Yaseen & Muhammad Umair & Khurram Yousaf & Zhenjie Yang & Skakeel Ahmed Soomro, 2018. "Performance Evaluation of Root Zone Heating System Developed with Sustainable Materials for Application in Low Temperatures," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    16. Chunxia Jiang & Zhixiong Lu & Wenbin Dong & Bo Cao & Kyoosik Shin, 2023. "Measurement and Analysis of the Influence Factors of Tractor Tire Contact Area Based on a Multiple Linear Regression Equation," Sustainability, MDPI, vol. 15(13), pages 1-12, June.
    17. Rajeev Kumar Gupta & Hitesh Hans & Anu Kalia & Jasjit Singh Kang & Jagroop Kaur & Paramjit Kaur Sraw & Anmol Singh & Abed Alataway & Ahmed Z. Dewidar & Mohamed A. Mattar, 2022. "Long-Term Impact of Different Straw Management Practices on Carbon Fractions and Biological Properties under Rice–Wheat System," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    18. Satish Kumar Singh & Abhik Patra & Ramesh Chand & Hanuman Singh Jatav & Yang Luo & Vishnu D. Rajput & Shafaque Sehar & Sanjay Kumar Attar & Mudasser Ahmed Khan & Surendra Singh Jatav & Tatiana Minkina, 2022. "Surface Seeding of Wheat: A Sustainable Way towards Climate Resilience Agriculture," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
    19. Tek B. Sapkota & Vivek Shankar & Munmun Rai & Mangi L Jat & Clare M. Stirling & Love K. Singh & Hanuman S. Jat & Mohinder S. Grewal, 2017. "Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    20. Naijuan Hu & Qian Chen & Liqun Zhu, 2019. "The Responses of Soil N 2 O Emissions to Residue Returning Systems: A Meta-Analysis," Sustainability, MDPI, vol. 11(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:122-:d:193392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.