IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2278-d155675.html
   My bibliography  Save this article

Ensemble Modeling for Sustainable Technology Transfer

Author

Listed:
  • Junseok Lee

    (Department of Industrial Management Engineering, Korea University, Seoul 02841, Korea)

  • Ji-Ho Kang

    (Department of Industrial Management Engineering, Korea University, Seoul 02841, Korea)

  • Sunghae Jun

    (Department of Big Data and Statistics, Cheongju University, Chungbuk 28503, Korea)

  • Hyunwoong Lim

    (Department of Industrial Management Engineering, Korea University, Seoul 02841, Korea)

  • Dongsik Jang

    (Department of Industrial Management Engineering, Korea University, Seoul 02841, Korea)

  • Sangsung Park

    (Graduate School of Management of Technology, Korea University, Seoul 02841, Korea)

Abstract

These days, technological advances are being made through technological conversion. Following this trend, companies need to adapt and secure their own sustainable technological strategies. Technology transfer is one such strategy. This method is especially effective in coping with recent technological developments. In addition, universities and research institutes are able to secure new research opportunities through technology transfer. The aim of our study is to provide a technology transfer prediction model for the sustainable growth of companies. In the proposed method, we first collected patent data from a Korean patent information service provider. Next, we used latent Dirichlet allocation, which is a topic modeling method used to identify the technical field of the collected patents. Quantitative indicators on the patent data were also extracted. Finally, we used the variables that we obtained to create a technology transfer prediction model using the AdaBoost algorithm. The model was found to have sufficient classification performance. It is expected that the proposed model will enable universities and research institutes to secure new technology development opportunities more efficiently. In addition, companies using this model can maintain sustainable growth in line, coping with the changing pace of society.

Suggested Citation

  • Junseok Lee & Ji-Ho Kang & Sunghae Jun & Hyunwoong Lim & Dongsik Jang & Sangsung Park, 2018. "Ensemble Modeling for Sustainable Technology Transfer," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2278-:d:155675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
    2. Sangsung Park & Sunghae Jun, 2017. "Technology Analysis of Global Smart Light Emitting Diode (LED) Development Using Patent Data," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    3. Yongtae Park & Sungjoo Lee & Sora Lee, 2012. "Patent analysis for promoting technology transfer in multi-technology industries: the Korean aerospace industry case," The Journal of Technology Transfer, Springer, vol. 37(3), pages 355-374, June.
    4. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    5. Alfaro, Esteban & Gamez, Matias & García, Noelia, 2013. "adabag: An R Package for Classification with Boosting and Bagging," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i02).
    6. Jaehyun Choi & Dongsik Jang & Sunghae Jun & Sangsung Park, 2015. "A Predictive Model of Technology Transfer Using Patent Analysis," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    7. Kim, Gabjo & Bae, Jinwoo, 2017. "A novel approach to forecast promising technology through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 228-237.
    8. Bozeman, Barry, 2000. "Technology transfer and public policy: a review of research and theory," Research Policy, Elsevier, vol. 29(4-5), pages 627-655, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Won Jun Choe & Ilyong Ji, 2019. "The Performance of Supply-Push Versus Demand-Pull Technology Transfer and the Role of Technology Marketing Strategies: The Case of a Korean Public Research Institute," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    2. Farheen Naz & Anil Kumar & Abhijit Majumdar & Rohit Agrawal, 2022. "Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research," Operations Management Research, Springer, vol. 15(1), pages 378-398, June.
    3. Jong-Min Kim & Bainwen Sun & Sunghae Jun, 2019. "Sustainable Technology Analysis Using Data Envelopment Analysis and State Space Models," Sustainability, MDPI, vol. 11(13), pages 1-19, June.
    4. Chavosh Nejad, Mohammad & Mansour, Saeed & Karamipour, Azita, 2021. "An AHP-based multi-criteria model for assessment of the social sustainability of technology management process: A case study in banking industry," Technology in Society, Elsevier, vol. 65(C).
    5. Lisa Craiut & Constantin Bungau & Paul Andrei Negru & Tudor Bungau & Andrei-Flavius Radu, 2022. "Technology Transfer in the Context of Sustainable Development—A Bibliometric Analysis of Publications in the Field," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    6. Youngho Kim & Sangsung Park & Junseok Lee & Dongsik Jang & Jiho Kang, 2021. "Integrated Survival Model for Predicting Patent Litigation Hazard," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    7. Jihoo Jung & Jehyun Lee & Sangjin Choi & Woonho Baek, 2022. "Information Analysis on Foreign Institution for International R&D Collaboration Using Natural Language Processing," Energies, MDPI, vol. 16(1), pages 1-17, December.
    8. Adriano Mesquita Soares & João Luiz Kovaleski & Silvia Gaia & Daiane Maria de Genaro Chiroli, 2020. "Building Sustainable Development through Technology Transfer Offices: An Approach Based on Levels of Maturity," Sustainability, MDPI, vol. 12(5), pages 1-22, February.
    9. Sandeep Singhai & Ritika Singh & Harish Kumar Sardana & Anuradha Madhukar, 2021. "Analysis of Factors Influencing Technology Transfer: A Structural Equation Modeling Based Approach," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    10. Dae Geon Kim & Sang Ok Choi, 2018. "Impact of Construction IT Technology Convergence Innovation on Business Performance," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    11. Jagriti Singh & Krishan Kumar Pandey & Anil Kumar & Farheen Naz & Sunil Luthra, 2023. "Drivers, barriers and practices of net zero economy: An exploratory knowledge based supply chain multi-stakeholder perspective framework," Operations Management Research, Springer, vol. 16(3), pages 1059-1090, September.
    12. Sunghae Jun, 2019. "Bayesian Structural Time Series and Regression Modeling for Sustainable Technology Management," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    13. Juhyun Lee & Jiho Kang & Sangsung Park & Dongsik Jang & Junseok Lee, 2020. "A Multi-Class Classification Model for Technology Evaluation," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    14. Bilal Barış Alkan & Leyla Karakuş & Bekir Direkci, 2023. "Knowledge discovery from the texts of Nobel Prize winners in literature: sentiment analysis and Latent Dirichlet Allocation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5311-5334, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
    2. Dae Geon Kim & Sang Ok Choi, 2018. "Impact of Construction IT Technology Convergence Innovation on Business Performance," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    3. Junhyeog Choi & Sunghae Jun & Sangsung Park, 2016. "A Patent Analysis for Sustainable Technology Management," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    4. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    5. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    6. Erzurumlu, S. Sinan & Pachamanova, Dessislava, 2020. "Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    7. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    8. Uijun Kwon & Youngjung Geum, 2020. "Identification of promising inventions considering the quality of knowledge accumulation: a machine learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1877-1897, December.
    9. Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
    10. Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
    11. Lijie Feng & Kehui Liu & Jinfeng Wang & Kuo-Yi Lin & Ke Zhang & Luyao Zhang, 2022. "Identifying Promising Technologies of Electric Vehicles from the Perspective of Market and Technical Attributes," Energies, MDPI, vol. 15(20), pages 1-22, October.
    12. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    13. Laura Borge & Stefanie Bröring, 2020. "What affects technology transfer in emerging knowledge areas? A multi-stakeholder concept mapping study in the bioeconomy," The Journal of Technology Transfer, Springer, vol. 45(2), pages 430-460, April.
    14. Sandra Wankmüller, 2023. "A comparison of approaches for imbalanced classification problems in the context of retrieving relevant documents for an analysis," Journal of Computational Social Science, Springer, vol. 6(1), pages 91-163, April.
    15. Battaglia, Daniele & Landoni, Paolo & Rizzitelli, Francesco, 2017. "Organizational structures for external growth of University Technology Transfer Offices: An explorative analysis," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 45-56.
    16. Julia Olmos‐Peñuela & Paul Benneworth & Elena Castro‐Martínez, 2015. "Exploring the factors related with scientists’ willingness to incorporating external knowledge," CHEPS Working Papers 201504, University of Twente, Center for Higher Education Policy Studies (CHEPS).
    17. Arsenyan, Jbid & Mirowska, Agata & Piepenbrink, Anke, 2023. "Close encounters with the virtual kind: Defining a human-virtual agent coexistence framework," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    18. JinHyo Joseph Yun & EuiSeob Jeong & Xiaofei Zhao & Sung Deuk Hahm & KyungHun Kim, 2019. "Collective Intelligence: An Emerging World in Open Innovation," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    19. Yixin Dai & David Popp & Stuart Bretschneider, 2005. "Institutions and intellectual property: The influence of institutional forces on university patenting," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 24(3), pages 579-598.
    20. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2278-:d:155675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.