IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2249-d155341.html
   My bibliography  Save this article

Spatial Variation of Urban Thermal Environment and Its Relation to Green Space Patterns: Implication to Sustainable Landscape Planning

Author

Listed:
  • Zhijie Wu

    (XJTLU-Suzhou Urban & Environment Research Institute, Suzhou 215200, Jiangsu, China)

  • Yixin Zhang

    (XJTLU-Suzhou Urban & Environment Research Institute, Suzhou 215200, Jiangsu, China
    XJTLU-Huai’an Research Institute of New-type Urbanization, Huai’an 223005, Jiangsu, China
    Department of Environmental Science, Xi’an Jiaotong-liverpool Uiversity (XJTLU), Suzhou 215123, Jiangsu, China)

Abstract

The rapid changes of land covers in urban areas are one of major environmental concerns because of their environmental impacts. Such land cover changes include the transformation of green space to impervious surface, and the increase of land surface temperature (LST). The objective of this study was to examine the spatial variation of urban landscape composition and configuration, as well as their influences on LST in Suzhou City, China. Landsat-8 image was processed to extract land covers and retrieve LSTs that were used to study relationship between spatial variation of LST and land covers. The results indicated that there was a significantly negative correlation between mean LST and green space coverage along the urban–rural gradients. With every 10% increased green space coverage, the mean LST drop was about 1.41 °C. A grid-base analysis performed at various grid sizes indicated that an increase in the percentage of surface water body area has a greater cooling effect of the mean LST than a vegetation increase. The mean LST had a significantly negative correlation with both the shape and aggregation indexes of the green space patches. Our results suggest that the sustainable landscape planning of green space in a typical city with a large water area should include both the vegetation and the surface water covers. The increased percentage of vegetation and surface water covers had the greatest cooling effect on an urban thermal environment, which is one of the ecosystem services that green space provides. A dense distribution of green space patches with complex shapes should be considered in urban sustainable landscape planning for increasing ecosystem services.

Suggested Citation

  • Zhijie Wu & Yixin Zhang, 2018. "Spatial Variation of Urban Thermal Environment and Its Relation to Green Space Patterns: Implication to Sustainable Landscape Planning," Sustainability, MDPI, vol. 10(7), pages 1-11, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2249-:d:155341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:asg:wpaper:1039 is not listed on IDEAS
    2. Sun, Ranhao & Chen, Liding, 2017. "Effects of green space dynamics on urban heat islands: Mitigation and diversification," Ecosystem Services, Elsevier, vol. 23(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiming Li & Xiyang Chen & Zhou Shen & Zhengxi Fan, 2022. "Evaluating Neighborhood Green-Space Quality Using a Building Blue–Green Index (BBGI) in Nanjing, China," Land, MDPI, vol. 11(3), pages 1-18, March.
    2. Tian Wang & Hui Tu & Bo Min & Zuzheng Li & Xiaofang Li & Qingxiang You, 2022. "The Mitigation Effect of Park Landscape on Thermal Environment in Shanghai City Based on Remote Sensing Retrieval Method," IJERPH, MDPI, vol. 19(5), pages 1-24, March.
    3. Wojciech Durlak & Margot Dudkiewicz & Małgorzata Milecka, 2022. "A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland)," Land, MDPI, vol. 11(11), pages 1-29, October.
    4. Zhijie Wu & Yixin Zhang, 2019. "Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect," Sustainability, MDPI, vol. 11(3), pages 1-11, February.
    5. Xuan Zhao & Jianjun Liu & Yuankun Bu, 2021. "Quantitative Analysis of Spatial Heterogeneity and Driving Forces of the Thermal Environment in Urban Built-up Areas: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    6. Peihao Song & Gunwoo Kim & Audrey Mayer & Ruizhen He & Guohang Tian, 2020. "Assessing the Ecosystem Services of Various Types of Urban Green Spaces Based on i-Tree Eco," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    7. Xindi Zhang & Yixin Zhang & Jun Zhai & Yongfa Wu & Anyuan Mao, 2021. "Waterscapes for Promoting Mental Health in the General Population," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
    8. Jingming Qian & Shujiang Miao & Nigel Tapper & Jianguang Xie & Greg Ingleton, 2020. "Investigation on Airport Landscape Cooling Associated with Irrigation: A Case Study of Adelaide Airport, Australia," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    9. Amit Kumar & Vivek Agarwal & Lalit Pal & Surendra Kumar Chandniha & Vishal Mishra, 2021. "Effect of Land Surface Temperature on Urban Heat Island in Varanasi City, India," J, MDPI, vol. 4(3), pages 1-10, August.
    10. Yuhan Yu & Wenting Zhang & Peihong Fu & Wei Huang & Keke Li & Kai Cao, 2020. "The Spatial Optimization and Evaluation of the Economic, Ecological, and Social Value of Urban Green Space in Shenzhen," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    11. Darshana Athukorala & Yuji Murayama, 2020. "Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana," Sustainability, MDPI, vol. 12(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Kumar & Vivek Agarwal & Lalit Pal & Surendra Kumar Chandniha & Vishal Mishra, 2021. "Effect of Land Surface Temperature on Urban Heat Island in Varanasi City, India," J, MDPI, vol. 4(3), pages 1-10, August.
    2. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    3. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    4. Tong Zhang & Sophia Shuang Chen & Guangyu Li, 2020. "Exploring the relationships between urban form metrics and the vegetation biomass loss under urban expansion in China," Environment and Planning B, , vol. 47(3), pages 363-380, March.
    5. Muhammad Sadiq Khan & Sami Ullah & Tao Sun & Arif UR Rehman & Liding Chen, 2020. "Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    6. Shanshan Chen & Dagmar Haase & Bing Xue & Thilo Wellmann & Salman Qureshi, 2021. "Integrating Quantity and Quality to Assess Urban Green Space Improvement in the Compact City," Land, MDPI, vol. 10(12), pages 1-14, December.
    7. Yunfang Jiang & Shidan Jiang & Tiemao Shi, 2020. "Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai," IJERPH, MDPI, vol. 17(22), pages 1-29, November.
    8. Han Xiao & Monika Kopecká & Shan Guo & Yanning Guan & Danlu Cai & Chunyan Zhang & Xiaoxin Zhang & Wutao Yao, 2018. "Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    9. Kaihua Zhang & Guoliang Yun & Peihao Song & Kun Wang & Ang Li & Chenyu Du & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Xiaoxue Zhu & Shidong Ge, 2023. "Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    10. Hongyu Du & Jinquan Ai & Yongli Cai & Hong Jiang & Pudong Liu, 2019. "Combined Effects of the Surface Urban Heat Island with Landscape Composition and Configuration Based on Remote Sensing: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    11. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.
    12. Yangyang Gong & Zulpiya Mamat & Lei Shi & Fenglin Liu, 2023. "Restorative Effects of Park Visiting on Physiology, Psychology, and Society and the Factors Influencing Park Visiting," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    13. Yanxia Hu & Changqing Wang & Jingjing Li, 2023. "Assessment of Heat Mitigation Services Provided by Blue and Green Spaces: An Application of the InVEST Urban Cooling Model with Scenario Analysis in Wuhan, China," Land, MDPI, vol. 12(5), pages 1-21, April.
    14. Yu-Ling Sun & Chun-Hua Zhang & Ying-Jie Lian & Jia-Min Zhao, 2022. "Exploring the Global Research Trends of Cities and Climate Change Based on a Bibliometric Analysis," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    15. Das, Arijit & Das, Manob, 2023. "Exploring the relationship between quality of living and green spaces in cities: Evidence from an Indian megacity region of global south," Land Use Policy, Elsevier, vol. 129(C).
    16. Senetra Adam & Krzywnicka Iwona & Mielke Marcin, 2018. "An analysis of the spatial distribution, influence and quality of urban green space – a case study of the Polish city of Tczew," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 42(42), pages 129-149, December.
    17. Liu, Jie & Zhang, Lang & Zhang, Qingping & Li, Chao & Zhang, Guilian & Wang, Yuncai, 2022. "Spatiotemporal evolution differences of urban green space: A comparative case study of Shanghai and Xuchang in China," Land Use Policy, Elsevier, vol. 112(C).
    18. Anna Laura Pisello & Maria Saliari & Konstantina Vasilakopoulou & Shamila Hadad & Mattheos Santamouris, 2018. "Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    19. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    20. Valeria D’Ambrosio & Ferdinando Di Martino & Marina Rigillo, 2022. "GIS-Based Model for Constructing Ecological Efficiency Maps of Urban Green Areas: The Case Study of Western Naples, Italy," Sustainability, MDPI, vol. 14(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2249-:d:155341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.